首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 求矩阵A的特征值与特征向量;
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 求矩阵A的特征值与特征向量;
admin
2019-02-23
72
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解。
求矩阵A的特征值与特征向量;
选项
答案
因为矩阵A的各行元素之和均为3,所以有 [*] 则λ=3是矩阵A的特征值,α=(1,1,1)
T
是对应的特征向量。对应λ=3的全部特征向量为kα=k(1,1,1)
T
,其中k是不为零的常数。 又由题设知Aα
1
=0,Aα
2
=0,即Aα
1
=0·α
1
,Aα
2
=0·α
2
,而且α
1
,α
2
线性无关,所以λ=0是矩阵A的二重特征值,α
1
,α
2
是其对应的特征向量,因此对应λ=0的全部特征向量为 k
1
α
1
+k
2
α
2
=k
1
(一1,2,一1)
T
+k
2
(0,一1,1)
T
,其中k
1
,k
2
是不全为零的常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/wej4777K
0
考研数学二
相关试题推荐
计算,其中D={(x,y)|-1≤x≤1,0≤y≤2}.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设f(x)在(-∞,+∞)上是导数连续的有界函数,|f(x)-f’(x)|≤1,证明:|f(x)|≤1.
设函数y=f(χ)在[a,b](a>0)连续,由曲线y=f(χ),直线χ=aχ=b及χ轴围成的平面图形(如图3.12)绕Y轴旋转一周得旋转体,试导出该旋转体的体积公式.
若二次型2χ12+χ22+χ32+2χ1χ2+2tχ2χ3的秩为2,则t=_______.
函数与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。(I)求的值;(Ⅱ)计算极限
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(一2+a2x3)2+…+(xn一1+an一1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数,试问:当a1,a2,…,an满足何种条件时,二次型f为正定二次型.
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
求下列幂级数的收敛域:
某产品的次品率为0.1,检验员每天检验4次.每次随机地取10件产品进行检验,如果发现其中的次品数多于1,就去调整设备.以X表示一天中调整设备的次数,且诸产品是否为次品是相互独立的,求E(X).
随机试题
集体合同的效力。
对CT专用术语的解释,错误的是
墨汁负染色常用于
以下哪项不是休克的病理生理变化
合理用药的概念是合理用药作出的选择是
根据高压管道的特点要求其性能更要具有()。
下列关于QDII基金的申购和赎回的表述,错误的是()。
2002年3月,A县B镇举行第六届人民代表大会第一次会议。共有代表100人。在选举过程中,有代表19人书面联名提出本级人大主席候选人甲,又有代表9人书面联名提出本级人民政府镇长的候选人乙。第一次会议结束后,2002年6月,25名代表提出临时召集本级人民代表
跨国公司的作用不包括()。
Thesedaysurbanlifestylesseemtochangeveryfast.Itis【C1】______justclothingandhairstylesthatareinstyleoneyearand
最新回复
(
0
)