首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 求矩阵A的特征值与特征向量;
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 求矩阵A的特征值与特征向量;
admin
2019-02-23
61
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解。
求矩阵A的特征值与特征向量;
选项
答案
因为矩阵A的各行元素之和均为3,所以有 [*] 则λ=3是矩阵A的特征值,α=(1,1,1)
T
是对应的特征向量。对应λ=3的全部特征向量为kα=k(1,1,1)
T
,其中k是不为零的常数。 又由题设知Aα
1
=0,Aα
2
=0,即Aα
1
=0·α
1
,Aα
2
=0·α
2
,而且α
1
,α
2
线性无关,所以λ=0是矩阵A的二重特征值,α
1
,α
2
是其对应的特征向量,因此对应λ=0的全部特征向量为 k
1
α
1
+k
2
α
2
=k
1
(一1,2,一1)
T
+k
2
(0,一1,1)
T
,其中k
1
,k
2
是不全为零的常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/wej4777K
0
考研数学二
相关试题推荐
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
当x→0时,3x-4sinx+sinxcosx与xn为同阶无穷小,则n=________
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r0的雪堆融化3小时后体积为原来的,求全部融化需要的时间.
设z=f(exsiny,x2+y2),其中f具有二阶连续偏导数,求
n阶矩阵A满足A2-2A-3E=O,证明A能相似对角化.
设A,B为n阶可逆矩阵,则().
设A为n阶方阵,且n≥20证明:|A*|=|(一A)*|。
求下列函数项级数的收敛域:
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(一2+a2x3)2+…+(xn一1+an一1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数,试问:当a1,a2,…,an满足何种条件时,二次型f为正定二次型.
已知|a|=2,|b|=5,a和b的夹角为,如果向量A=λa+17b与B=3a一b垂直,则系数λ=_____.
随机试题
PublicperceptionofsuccessintheU.S.mightbetotallymisguided.While92%ofpeoplebelieveotherscaremostaboutfame
幼儿园最常用的评价是()
急性阑尾炎发病已4天。腹痛稍减轻。但仍发热,右下腹可触及有压痛的肿块。应采取的治疗方案是
患者,女性,20岁,左下第一磨牙颌面龋洞,达牙本质浅层,探稍敏感,冷刺激进洞后稍敏感。该患牙的诊断可能为
既滋补肝肾,又清虚热的药物是
当患者发生青霉素过敏性休克时,在皮下注射0.1%盐酸肾上腺素液1ml的同时应立即
(2016年)甲股份有限公司(以下简称“甲公司”)为A股上市公司。2015年8月3日,乙有限责任公司(以下简称“乙公司”)向中国证监会、证券交易所提交权益变动报告书,称其自2015年7月20日开始持有甲公司股份,截至8月1日,已经通过公开市场交易持有该公司
陈独秀在《青年杂志》创刊号上宣称“批评时政,非其旨也。”这预示新文化运动()。
求函数f(χ)=(2-t)e-tdt的最值.
IBMresearchersareattemptingtowarmuphuman-computerrelationships.Forexample,IBM,InternationalBusinessMachines,hasb
最新回复
(
0
)