首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
“三角形的中位线”是初中学习三角形知识点中必不可少的内容。对学生的要求是必须了解三角形中位线的概念,熟练掌握三角形中位线定理的证明和有关应用。 教学过程(只要求写出新课导入和新知识探究、巩固、应用等)及设计意图。
“三角形的中位线”是初中学习三角形知识点中必不可少的内容。对学生的要求是必须了解三角形中位线的概念,熟练掌握三角形中位线定理的证明和有关应用。 教学过程(只要求写出新课导入和新知识探究、巩固、应用等)及设计意图。
admin
2017-09-18
31
问题
“三角形的中位线”是初中学习三角形知识点中必不可少的内容。对学生的要求是必须了解三角形中位线的概念,熟练掌握三角形中位线定理的证明和有关应用。
教学过程(只要求写出新课导入和新知识探究、巩固、应用等)及设计意图。
选项
答案
教学过程 ①一道趣题——课堂因你而和谐 问题:你能将任意一个三角形分成四个全等的三角形吗?这四个全等三角形能拼凑成一个平行四边形吗?(板书) (这一问题激发了学生的学习兴趣,学生积极主动地加入到课堂教学中,课堂气氛变得较为和谐,课堂也鲜活起来了。) 学生想出了这样的方法:顺次连接三角形每两边的中点,看上去就得到了四个全等的三角形。将△ADE绕E点沿顺(逆)时针方向旋转180°可得平行四边形ADFE。 问题:你有办法验证吗? ②一种实验——课堂因你而生动 学生的验证方法较多,其中较为典型的方法如下:生1:沿DE、DF、EF将画在纸上的△ABC剪开.看四个三角形能否重合。生2:分别测量四个三角形的三边长度,判断是否可利用“SSS”来判定三角形全等。生3:分别测量四个三角形对应的边及角,判断是否可用“SAS、ASA或AAS”判定全等。 引导:上述同学都采用了实验法,存在误差,那么如何利用推理论证的方法验证呢? ③一种探索——课堂因你而鲜活 师:把连接三角形两边中点的线段叫作三角形的中位线。(板书) 问题:三角形的中位线与第三边有怎样的关系呢?在前面图1中你能发现什么结论呢?(学生的思维开始活跃起来,同学之间开始互相讨论,积极发言) 学生的结果如下:DE∥BC,DF∥AC,EF∥AB,AE=EC,BF=FC,BD=AD,[*]DE=0.5BC,DF=AC,EF=0.5AB… 猜想:三角形的中位线平行于第三边,且等于第三边的一半。(板书) 师:如何证明这个猜想的命题呢? 生:先将文字问题转化为几何问题然后证明。 已知:DE是ABC的中位线,求证:DE//BC、DE=0.5BC。学生思考后教师启发:要证明两条直线平行,可以利用“三线八角”的有关内容进行转化,而要证明一条线段的长等于另一条线段长度的一半,可采用将较短的线段延长一倍,或者截取较长线段的一半等方法进行转化归纳。(学生积极讨论,得出几种常用方法,大致思路如下) 生1:延长DE到F使EF=DE,连接CF 由[*] 得AD=FC从而BD=FC 所以,四边形DBCF为平行四边形得DF==BC,可得DE=0.5BC(板书) 生2:将ADE绕E点沿顺(逆)时针方向旋转180°,使得点A与点C重合,即[*],可得BD=CF,得DBCF为平行四边形。得DF=BC可得DE=0.5BC 生3:延长DE到F使DE=EF,连接AF、CF、CD,可得AD=CF 得DB=CF 得DF=BC 可得DE=0.5BC 生4:利用[*]且相似比为1:2 可得DE=0.5BC 师:很好,好极了! ④一种思考——课堂因你而添彩 问题:三角形的中位线与中线有什么区别与联系呢? 容易得出如下事实:都是三角形内部与边的中点有关的线段。但中位线平行于第三边.且等于第三边的一半,三角形的一条中位线与第三边上的中线互相平分。(学生交流、探索、思考、验证) ⑤一种照应——课堂因你而完整 问题:你能利用三角形中位线定理说明本节课开始提出的趣题的合理性吗?(学生争先恐后回答,课堂气氛活跃) ⑥一句总结——课堂因你而彰显无穷魅力 学生总结本节内容:三角形的中位线和三角形中位线定理。(另附作业) ⑦课后反思 本节课以“如何将一个任意三角形分为四个全等的三角形”这一问题为出发点,以平行四边形的性质定理和判定定理为桥梁,探究了三角形中位线的基本性质和应用。在本节课中,学生亲身经历了“探索一发现一猜想一证明”的探究过程,体会了证明的必要性和证明方法的多样性。在此过程中,笔者注重新旧知识的联系,同时强调转化、类比、归纳等数学思想方法的恰当应用,达到了预期的目的。
解析
转载请注明原文地址:https://kaotiyun.com/show/Kxtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
“画为心迹,境由心生”,艺术创作是一种心灵历程,是艺术家内心对自然与社会的真实体验,它最亲近自然而又最超越自然。这说明()。①艺术创作来自艺术家的灵感②艺术创作是客体主体化的过程③艺术作品的形式与内容都是主观的④
春秋战国时期,社会经济发展比现在落后,但当时诸子峰起、百家争鸣,是中华文化史上的一个黄金时代。《孙子兵法》至今仍为兵家经典,甚至被应用于当代企业管理。这一事实主要说明()。
某教师在讲授“做情绪的主人”一课时。课前以两位同学面对考试所产生的不同情绪的片段进行课堂导入,这位老师采取了()方式。
理智面对社会生活中的不公平虽然公平一直是人类孜孜以求的目标,但用理性的目光审视人类社会发展的历程,我们不难发现,公平总受到一定社会条件的制约,任何社会都会存在一些不公平的现象。公平总是相对的,无论我们如何努力,都不可能达到绝对公平。尽管如此,我
某些老师对于学生间的代做和抄袭作业行为睁一只眼、闭一只眼。甚至有的老师无奈地说:抄作业的学生总比不做作业的学生好,抄一遍也是一种学习呀。问题:根据材料,并结合伦理学的相关知识进行分析。(1)你怎样看待材料中这些老师的做法?请说明理由。(2)为防止上述
刘某驾驶一辆满载乘客的长途客车,下山时刹车突然失灵,汽车快速向下滑行,左是山谷,右是悬崖,客车可能翻车坠入山谷。这时对面有一辆货车驶来,为了避免翻车事故的发生,刘某对着货车开去。客车因与货车相撞而停住,但货车司机身受重伤,因抢救无效而身亡。刘某的行为属于(
下列关于高中思想政治课程目标的表述,体现情感、态度价值观目标的是()。
为了能够提交出更贴近实际、更“接地气”的建议。也为了更好地将革命老区干部群众的心声带到2019年全国“两会”上,某全国人大代表深入革命老区进行调研,就基层医疗改革、教育公平和精准扶贫等热点问题广泛听取各方意见和建议。对此,下列说法正确的是()。①
某市每年投入2亿元预算资金用于资助劳动密集型企业进行技术改造,全面实施“机器人换人”计划。该计划实施两年来,参与企业劳动生产率、产品合格率均有较大幅度提高,单位产品成本大幅下降;而该市用工形势总体好于往年,岗位数仍大于求职数。对该市“机器人换人”计划,下列
曲线y=x3+x+1在点(1,3)处的切线方程为()。
随机试题
患者,男,67岁。在骨折复位中突发胸闷、心悸气短。心电图提示三度房室传导阻滞。应给予的紧急处理是
女,62岁。曾4次足月分娩,绝经12年。近1年来下腹坠胀,有块状物脱出于阴道口,休息后不能回纳。妇科检查:宫颈口脱出于阴道口外1cm处,子宫正常大小。该患者首选的治疗方法是
目前,我国证券清算、交收业务主要遵循的原则有( )。
根据变压器的空载试验可以求得()。
十部乐
[2013年]设X1,X2,X3是随机变量,且X1~N(0,1),X2~N(0,22),X3~N(5,32),pi=P{-2≤Xi≤2)(i=1,2,3),则().
A、 B、 C、 D、 B
程序通过定义学生结构体变量,存储了学生的学号、姓名和3门课的成绩。函数fun的功能是对形参b所指结构体变量中的数据进行修改,最后在主函数中输出修改后的数据。例如:b所指变量t中的学号、姓名、和三门课的成绩依次是:10002、"ZhangQi"、9
在带链栈中,经过一系列正常的操作后,如果top=bosom,则栈中的元素个数为
Mostparentsthesedayshavetorelyontheirforceofpersonalityandwhateverloveandrespecttheycaninspireto(31)anyin
最新回复
(
0
)