首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
“三角形的中位线”是初中学习三角形知识点中必不可少的内容。对学生的要求是必须了解三角形中位线的概念,熟练掌握三角形中位线定理的证明和有关应用。 教学过程(只要求写出新课导入和新知识探究、巩固、应用等)及设计意图。
“三角形的中位线”是初中学习三角形知识点中必不可少的内容。对学生的要求是必须了解三角形中位线的概念,熟练掌握三角形中位线定理的证明和有关应用。 教学过程(只要求写出新课导入和新知识探究、巩固、应用等)及设计意图。
admin
2017-09-18
35
问题
“三角形的中位线”是初中学习三角形知识点中必不可少的内容。对学生的要求是必须了解三角形中位线的概念,熟练掌握三角形中位线定理的证明和有关应用。
教学过程(只要求写出新课导入和新知识探究、巩固、应用等)及设计意图。
选项
答案
教学过程 ①一道趣题——课堂因你而和谐 问题:你能将任意一个三角形分成四个全等的三角形吗?这四个全等三角形能拼凑成一个平行四边形吗?(板书) (这一问题激发了学生的学习兴趣,学生积极主动地加入到课堂教学中,课堂气氛变得较为和谐,课堂也鲜活起来了。) 学生想出了这样的方法:顺次连接三角形每两边的中点,看上去就得到了四个全等的三角形。将△ADE绕E点沿顺(逆)时针方向旋转180°可得平行四边形ADFE。 问题:你有办法验证吗? ②一种实验——课堂因你而生动 学生的验证方法较多,其中较为典型的方法如下:生1:沿DE、DF、EF将画在纸上的△ABC剪开.看四个三角形能否重合。生2:分别测量四个三角形的三边长度,判断是否可利用“SSS”来判定三角形全等。生3:分别测量四个三角形对应的边及角,判断是否可用“SAS、ASA或AAS”判定全等。 引导:上述同学都采用了实验法,存在误差,那么如何利用推理论证的方法验证呢? ③一种探索——课堂因你而鲜活 师:把连接三角形两边中点的线段叫作三角形的中位线。(板书) 问题:三角形的中位线与第三边有怎样的关系呢?在前面图1中你能发现什么结论呢?(学生的思维开始活跃起来,同学之间开始互相讨论,积极发言) 学生的结果如下:DE∥BC,DF∥AC,EF∥AB,AE=EC,BF=FC,BD=AD,[*]DE=0.5BC,DF=AC,EF=0.5AB… 猜想:三角形的中位线平行于第三边,且等于第三边的一半。(板书) 师:如何证明这个猜想的命题呢? 生:先将文字问题转化为几何问题然后证明。 已知:DE是ABC的中位线,求证:DE//BC、DE=0.5BC。学生思考后教师启发:要证明两条直线平行,可以利用“三线八角”的有关内容进行转化,而要证明一条线段的长等于另一条线段长度的一半,可采用将较短的线段延长一倍,或者截取较长线段的一半等方法进行转化归纳。(学生积极讨论,得出几种常用方法,大致思路如下) 生1:延长DE到F使EF=DE,连接CF 由[*] 得AD=FC从而BD=FC 所以,四边形DBCF为平行四边形得DF==BC,可得DE=0.5BC(板书) 生2:将ADE绕E点沿顺(逆)时针方向旋转180°,使得点A与点C重合,即[*],可得BD=CF,得DBCF为平行四边形。得DF=BC可得DE=0.5BC 生3:延长DE到F使DE=EF,连接AF、CF、CD,可得AD=CF 得DB=CF 得DF=BC 可得DE=0.5BC 生4:利用[*]且相似比为1:2 可得DE=0.5BC 师:很好,好极了! ④一种思考——课堂因你而添彩 问题:三角形的中位线与中线有什么区别与联系呢? 容易得出如下事实:都是三角形内部与边的中点有关的线段。但中位线平行于第三边.且等于第三边的一半,三角形的一条中位线与第三边上的中线互相平分。(学生交流、探索、思考、验证) ⑤一种照应——课堂因你而完整 问题:你能利用三角形中位线定理说明本节课开始提出的趣题的合理性吗?(学生争先恐后回答,课堂气氛活跃) ⑥一句总结——课堂因你而彰显无穷魅力 学生总结本节内容:三角形的中位线和三角形中位线定理。(另附作业) ⑦课后反思 本节课以“如何将一个任意三角形分为四个全等的三角形”这一问题为出发点,以平行四边形的性质定理和判定定理为桥梁,探究了三角形中位线的基本性质和应用。在本节课中,学生亲身经历了“探索一发现一猜想一证明”的探究过程,体会了证明的必要性和证明方法的多样性。在此过程中,笔者注重新旧知识的联系,同时强调转化、类比、归纳等数学思想方法的恰当应用,达到了预期的目的。
解析
转载请注明原文地址:https://kaotiyun.com/show/Kxtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
2017年2月10日,国家主席习近平同美国总统特朗普通电话时表示,中方愿意同美方一道努力加强沟通拓展合作,推动中美关系健康稳定发展,不断取得更加丰硕的成果,造福两国人民和世界各国人民。推动中美关系健康稳定发展,需要两国()。①共同秉承独立自主
某教师在思想品德课堂上特别注重发挥学生的主体地位,善于提问学生,并通过多样的话语评价每个学生的回答,比如“声音很洪亮”“善于观察生活”“概括总结能力较强”等。该老师对学生的评价体现了()要求。
数千年来中华文化提供的生活方式、民俗民风、中华料理、养生医药、建筑样式、传统节日、民族民间艺术、体育、礼仪,尤其是文字书法,是我们民族的瑰宝。即使在西风强劲的环境下,人们也日益认识到了自己传统文化的可贵。这启示我们要()。①传承民族文化,增强
下图中政府的做法所蕴含的哲学和政治学道理是()。①矛盾主次方面在一定条件下互相转化②量变引起质变是事物发展的必然趋势③有利于政府职能转变,发挥市场作用④会弱化政府对市场监督,使市场失灵
如今,手机已是更新换代频率最高的电子产品,手机支付、办公、游戏、社交、网络浏览等已经成为一种消费时尚和文化现象。这体现了()。①文化与经济的相互交融②文化是科技发展的动力③文化决定人的价值取向④文化改变人的生活方式
我国数学家华罗庚在一次报告中,以“一支粉笔多长为好”为例来讲解他所倡导的优选法。对此,他解释道:“每只粉笔都要丢掉一段一定短的粉笔头,但就这一点来说,愈长愈好。但太长了,使用起来很不方便,而且容易折断。每断一次,必然浪费一个粉笔头,反而不合适。因而就出现了
下面是高中必修教材《生活与哲学》中“整体和部分的辩证关系”课文相关内容,根据内容,设计教学目标,并提出有效达成该目标的三条措施。(1)整体和部分的区别整体是事物的全局和发展的全过程,从数量看它是一;部分是事物的局部和发展的各个阶段,从数量上看它是多。
某老师的《世界文化之旅》教学设计如下:(1)活动准备:教师适当提供相关背景资料,如有关网址、参考建议、教学目标等。(2)确定研究主题:学生选择一个自己感兴趣的民族或国家,通过各种途径收集资料,既可以单独进行,也可以以小组形式进行。(3)搜
随着汽车行业的蓬勃发展,越来越多的人成为了“有车一族”,停车难也成为不少人的“心头病”。最近,某高校飞轮式停车机器人项目组发明了一款停车“神器”,不仅解决了停车难的问题,还优化了停车环境。停车“神器”的发明佐证了()。①实践推动人们进行新的探
《义务教育数学课程标准(2011年版)》对“一元二次方程”的一条要求为:理解配方法,能用配方法、公式法、因式分解法解数学系数的一元二次方程.针对上述要求,完成下列任务.简要说明配方法、公式法、因式分解法的含义,并说明配方法在初中数学中还有哪些应用;
随机试题
FederalregulatorsWednesdayapprovedaplantocreateanationwideemergencyalert(警报)systemusingtextmessagesdeliveredtoc
诊断异位甲状腺用什么放射性核素显像最适宜
肺癌晚期,阴虚毒热,咯血不止时宜加
对中枢具有兴奋作用的药物是
缩窄性心包炎,一经确诊后治疗应是()
如果某药物的使用对于孕妇及哺乳期妇女的影响尚不明确,其药品说明书应注明
机电工程工序质量控制的方法包括()。
提高自主创新能力,建设创新型国家,是我国国家发展战略的核心,实施这一战略,需要加快实施国家中长期科技发展规划纲要,大力鼓励和提倡自主创新;深化科技体制改革,发挥企业在技术创新和创业投资发展过程中的主体作用;做强做大装备制造业;支持和推进高新技术的研发和产业
[2004年]设有齐次线性方程组试问a取何值时,该方程组有非零解?并求出其通解.
A、Thegoalsoftheemployees.B、Theobjectivesoftheorganization.C、Thestructureoftheorganization.D、Thepersonalprospect
最新回复
(
0
)