首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
admin
2015-06-30
72
问题
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A
*
)
2
-4E的特征值为0,5,32.求A
-1
的特征值并判断A
-1
是否可对角化.
选项
答案
设A的三个特征值为λ
1
,λ
2
,λ
3
,因为B=(A
*
)
2
-4E的三个特征值为0,5,32,所以 (A
*
)
2
的三个特征值为4,9,36,于是A
*
的三个特征值为2,3,6. 又因为|A
*
|=36=|A|
3-1
,所以|A|=6. 由[*]=6,得λ
1
=3,λ
2
=2,λ
3
=1, 由于一对逆矩阵的特征值互为倒数,所以A
-1
的特征值为1,[*] 因为A
-1
的特征值都是单值,所以A
-1
可以相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/L534777K
0
考研数学二
相关试题推荐
-π/8
微分方程xdy=y(xy一1)dx的通解为________.
A、 B、 C、 D、 B
设λ1,λ2是矩阵A的两个特征值,且λ1≠λ2,对应的特征向量分别为α1,α2,则α1,Aαλ1,λ2+Aα2线性无关的充分必要条件是()。
设g(x)可导,|g’(x)|<1,且当a≤x≤b时,a<g(x)<b,又x+g(x)-2f(x)=0,若{xn}满足xn+1=f(xn),n=0,1,2,…,x0∈[a,b]。证明:存在,并求其值。
设,xn=xn-1+un,n=1,2,…,且u0=x0=1.证明xn存在。
设常数p>1.证明级数收敛。
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明:α,Aα线性无关;(2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设某容器的形状是由曲线x=g(y)在x轴上方部分绕y轴旋转而成的立体,按2tcm3/s的速率往里倒水,能够使水平面上升速度恒为cm/s,求曲线x=g(y)的函数表达式?
随机试题
直接影响活动效率,顺利完成某种活动必备的个性心理特征是【】
纽曼的保健系统模式认为护士协助患者进行康复锻炼是属于
A.一捻金B.肥儿丸C.健脾消食丸D.小儿消食片E.小儿化食丸具有健脾和胃、消食、化滞功效的中成药是()
商业名称权的特点不包括()。
试问,验算柱对承台的冲切时,承台的抗冲切承载力设计值(kN),与下列何项数值最为接近?
下列各项中,符合营业税有关规定的有( )。
黄山松在黄山岩石丛这种难以见容、与己为敌的环境里生长,海拔高达一千六七百米,名松的树龄都以数百年计。这些松树因抗风御霜,针叶短粗,冠平如削,绿色深沉,枝干坚韧且富弹性,一株株显得生气勃勃,十分顽强。迎客松挺立在青狮石旁,玉屏峰与天都峰的风口上,寿逾千年,两
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)一求f’(x);
支持子程序调用的数据结构是()。
InterculturalLearningI.Introduction—gapbetweenlanguageteachinginclassandintherealworld—【T1】ofinterculturalawa
最新回复
(
0
)