首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设非齐次线性微分方程y’+p(x)y=q(x)有两个不同的解y1(x),y2(x),c为任意常数,则该方程的通解是( ).
[2006年] 设非齐次线性微分方程y’+p(x)y=q(x)有两个不同的解y1(x),y2(x),c为任意常数,则该方程的通解是( ).
admin
2021-01-25
104
问题
[2006年] 设非齐次线性微分方程y’+p(x)y=q(x)有两个不同的解y
1
(x),y
2
(x),c为任意常数,则该方程的通解是( ).
选项
A、c[y
1
(x)一y
2
(x)]
B、y
1
(x)+c[y
1
(x)-y
2
(x)]
C、c[y
1
(x)+y
2
(x)]
D、y
1
(x)+c[y
1
(x)+y
2
(x)]
答案
B
解析
因y
1
(x),y
2
(x)是y’+p(x)y=q(x)的两个不同的解,y
1
(x)-y
2
(x)是对应齐次方程y’+p(x)y=0的非零解,所以由命题1.6.1.2(2)知,c[y
1
(x)+y
2
(x)]是对应齐次方程y+p(x)y=0的通解.又y’+p(x)y=q(x)的通解等于对应齐次方程的通解加上原方程的一个特解(见命题1.6.1.2(1)),故y
1
(x)+c[y
1
(x)-y
2
(x)]是该非齐次方程的通解.仅(B)入选.
(注:命题1.6.1.1 (1)若y
1
,y
2
,…,y
s
均为y’+p(x)y=q(x)的解,则当k
1
+k
2
+…+k
s
=1时,k
1
y
1
+k
2
y
2
+…+k
s
y
s
为y’+p(x)y=q(x)的解.
(2)若y
1
,y
2
,…,y
s
均为y’+p(x)y=q(x)的解,则当k
1
+k
2
+…+k
s
=0时,k
1
y
1
+k
2
y
2
+…+k
s
y
s
为y’+p(x)y=0的解.
特别地,若y
1
,y
2
为y’+p(x)y=q(x)的两个解,则y
2
-y
1
为y’+p(x)y=0的解.)
转载请注明原文地址:https://kaotiyun.com/show/Lcx4777K
0
考研数学三
相关试题推荐
设离散型随机变量X的概率函数为P{X=i}=pi+1,i=0,1,则p=___________.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X的概率密度为(θ>0),则θ的最大似然估计量
将适当的函数填人下列括号内,使等号成立.(1)d()=2dx;(2)d()=3xdx:(3)d()=cosxdx;(4)d()=sinωxdx:(5)d()=1/1+xdx(6)d(
[*],其中C为任意常数
已知某自动生产线加工出的产品次品率为0.01,检验人员每天检验8次,每次从已生产出的产品中随意取10件进行检验,如果发现其中有次品就去调整设备,那么一天至少要调整设备一次的概率为______.(0.9980≈0.4475)
设X1,X2,…,Xn为来自总体X的简单随机样本,其中E(X)=μ,D(X)=σ2,令U=-Xi,V=-Xj(i≠j),则ρUV=.
f(x)=在区间(一∞,+∞)内零点个数为()
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数。试利用中心极限定理估计:估计数据个数n满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数规.
求及arctanx的麦克劳林级数.
随机试题
著名诗人虞集、杨载、范椁、揭侯斯被称为()
哪种成分是粥样硬化所不具备的
液体制剂常用的附加剂包括()
浸泡内窥镜的消毒液为
需求量的大小还取决于消费者的收入水平。()
在一个工程项目中,具有独立的设计文件、竣工后可以独立发挥生产能力或效益的一组配套齐全的工程项目为( )。
广播电视发射系统的馈线的主要指标有()。
关于抵押担保,下列说法>FiE确的是()。
【察哈尔民众抗日同盟军】
Asmenage,theytypicallygetlessandlessdeepsleep—afactthatcould【B1】______theweightgainthatoften【B2】______middle
最新回复
(
0
)