首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设非齐次线性微分方程y’+p(x)y=q(x)有两个不同的解y1(x),y2(x),c为任意常数,则该方程的通解是( ).
[2006年] 设非齐次线性微分方程y’+p(x)y=q(x)有两个不同的解y1(x),y2(x),c为任意常数,则该方程的通解是( ).
admin
2021-01-25
73
问题
[2006年] 设非齐次线性微分方程y’+p(x)y=q(x)有两个不同的解y
1
(x),y
2
(x),c为任意常数,则该方程的通解是( ).
选项
A、c[y
1
(x)一y
2
(x)]
B、y
1
(x)+c[y
1
(x)-y
2
(x)]
C、c[y
1
(x)+y
2
(x)]
D、y
1
(x)+c[y
1
(x)+y
2
(x)]
答案
B
解析
因y
1
(x),y
2
(x)是y’+p(x)y=q(x)的两个不同的解,y
1
(x)-y
2
(x)是对应齐次方程y’+p(x)y=0的非零解,所以由命题1.6.1.2(2)知,c[y
1
(x)+y
2
(x)]是对应齐次方程y+p(x)y=0的通解.又y’+p(x)y=q(x)的通解等于对应齐次方程的通解加上原方程的一个特解(见命题1.6.1.2(1)),故y
1
(x)+c[y
1
(x)-y
2
(x)]是该非齐次方程的通解.仅(B)入选.
(注:命题1.6.1.1 (1)若y
1
,y
2
,…,y
s
均为y’+p(x)y=q(x)的解,则当k
1
+k
2
+…+k
s
=1时,k
1
y
1
+k
2
y
2
+…+k
s
y
s
为y’+p(x)y=q(x)的解.
(2)若y
1
,y
2
,…,y
s
均为y’+p(x)y=q(x)的解,则当k
1
+k
2
+…+k
s
=0时,k
1
y
1
+k
2
y
2
+…+k
s
y
s
为y’+p(x)y=0的解.
特别地,若y
1
,y
2
为y’+p(x)y=q(x)的两个解,则y
2
-y
1
为y’+p(x)y=0的解.)
转载请注明原文地址:https://kaotiyun.com/show/Lcx4777K
0
考研数学三
相关试题推荐
设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e一4x+x2+3x+2,则Q(x)=________,该微分方程的通解为________.
设A是n阶矩阵,|A|=5,则|(2A)*|=________.
设随机变量X~F(n,n),则P(X>1)=__________.
设二维随机变量(X,Y)的概率密度为f(x,y)=则对x>0,fY|X(y|x)=_________.
ex展开成(x-3)的幂级数为_________.
设函数f(x)在[0,1]上连续,且f(x)>0,则=________。
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
(2004年)函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=______.
(2000年)求函数y=的单调区间和极值,并求该函数图形的渐近线。
[2008年]设n元线性方程组AX=b,其中当a为何值时,该方程组有无穷多解,并求通解.
随机试题
TheColdPlacesTheArcticisapolarregion.Itsurrounds(环绕)theNorthPole.LikeAntarctica(南极洲).theArcticisala
证券公司申请介绍业务资格,应当符合的条件有()。
下列关于基金托管人的托管费叙述,不正确的是()。
根据《公司法》规定,下列各项中,属于公司法定公积金主要用途的有()。
社会工作者的一般特征有( )。
下列属于宪法关系的内容是()。
“一二.一”运动的基本口号是()。
算法的有穷性是指()。
Hefounditnecessaryforus______fromeachother.
如果受害者被及时送到医院,他本来会有机会活下来。(虚拟语气)
最新回复
(
0
)