首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。 证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。 证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
admin
2021-01-25
34
问题
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。
证明:对任何a∈[0,1],有∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)。
选项
答案
设F(x)=∫
0
x
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(x)g(1),则F(x)在[0,1]上的导数连续,并且 F’(x)=g(x)f’(x)一f’(x)g(1)=f’(x)[g(x)一g(1)]。 由于x∈[0,1]时,g’(x)≥0,因此g(x)一g(1)≤0,又f’(x)≥0,故F’(x)≤0,即F(x)在[0,1]上单调递减,注意到 F(1)=∫
0
1
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt—f(1)g(1),=f(t)g(t)|
0
1
一f(1)g(1)=0, 故F(1)=0。因此x∈[0,1]时,F(x)≥0,对任何a∈[0,1],都有 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)。
解析
转载请注明原文地址:https://kaotiyun.com/show/Iux4777K
0
考研数学三
相关试题推荐
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记求:U和V的相关系数ρ.
设随机变量X,Y相互独立,且X~P(1),Y~P(2),求P{max(X,Y)≠0)及P{min(X,Y)≠0}.
甲袋中有4个白球和6个黑球,乙袋中有5个白球和5个黑球,今从甲袋中任取2个球,从乙袋中任取一个球放在一起,再从这3个球中任取一球,求最后取到白球的概率.
[2016年]设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,}上服从均匀分布,令求Z=U+X的分布函数FZ(z).
[2016年]设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,}上服从均匀分布,令写出(X,Y)的概率密度;
[2005年]设二维随机变量(X,Y)的概率密度为求P(Y≤1/2|X≤1/2).
[2005年]设二维随机变量(X,Y)的概率密度为求Z=2X-y的概率密度fZ(z);
试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αTi表示列向量αi的转置,i=1,2,…,n.
(89年)假设函数f(χ)在[a,b]上连续.在(a,b)内可导,且f′(χ)≤0.记F(χ)=证明在(a,b)内F′(χ)≤0.
(91年)试证明函数f(χ)=在区间(0,+∞)内单调增加.
随机试题
骨转移癌进行手术的目的主要是
γ-谷氨酰基循环的主要作用是
根据案例背景,回答以下问题。某建设工程业主将土建工程发包给A施工单位,安装工程发包给B施工单位,装饰装修工程发包给C施工单位,关于这种发包方式:对于A、B、C三家施工单位之间的关系,正确的表述是()。
下列各项中,暂予免征环境保护税的有()。
以下哪些情况,旅行社不承担赔偿?()
设△ABC的内角A、B、C所对应的边分别为a、b、c,已知a=2,b=3,cosC=。求sinA的值。
下列表述正确的是()。
但丁说过:“道德常常能够填补人们智慧的缺陷,而智慧却不能同样填补道德的缺陷。”对这句话理解无误的是( )。
设有定义:“longx=123450L;”,则以下能够正确输出变量x的是()。
使用Access按用户的应用需求设计的结构合理、使用方便、高效的数据库和配套的应用程序系统,属于一种______.
最新回复
(
0
)