首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。 证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。 证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
admin
2021-01-25
85
问题
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。
证明:对任何a∈[0,1],有∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)。
选项
答案
设F(x)=∫
0
x
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(x)g(1),则F(x)在[0,1]上的导数连续,并且 F’(x)=g(x)f’(x)一f’(x)g(1)=f’(x)[g(x)一g(1)]。 由于x∈[0,1]时,g’(x)≥0,因此g(x)一g(1)≤0,又f’(x)≥0,故F’(x)≤0,即F(x)在[0,1]上单调递减,注意到 F(1)=∫
0
1
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt—f(1)g(1),=f(t)g(t)|
0
1
一f(1)g(1)=0, 故F(1)=0。因此x∈[0,1]时,F(x)≥0,对任何a∈[0,1],都有 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)。
解析
转载请注明原文地址:https://kaotiyun.com/show/Iux4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn是来自总体X的简单随机样本,其均值和方差分别为X与S2,且X~B(1,p),0<P<1.(I)试求:X的概率分布;(Ⅱ)证明:
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记求:U和V的相关系数ρ.
设来自总体X的简单随机样本X1,X2,…,Xn,总体X的概率分布为其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求(1)未知参数θ的最大似然估计量;(2)未知参数θ的矩估计量;(3)当样本值为1,1,2,1,3,2
甲袋中有4个白球和6个黑球,乙袋中有5个白球和5个黑球,今从甲袋中任取2个球,从乙袋中任取一个球放在一起,再从这3个球中任取一球,求最后取到白球的概率.
[2016年]设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,}上服从均匀分布,令求Z=U+X的分布函数FZ(z).
[2014年]设随机变量X,Y的概率分布相同,X的概率分布为且X与Y的相关系数求(X,Y)的概率分布;
(12年)证明:(-1<χ<1).
(11年)证明方程4arctanχ-χ+=0恰有两个实根.
(89年)假设函数f(χ)在[a,b]上连续.在(a,b)内可导,且f′(χ)≤0.记F(χ)=证明在(a,b)内F′(χ)≤0.
随机试题
教师在与学生的日常教学的接触、互动过程中,以观察和交流为主要方式,不断地了解学生,进而在有意或无意之间形成对学生的某种看法和判断的一种评价方式是()
下列哪种器官最易发生脂肪变性
胃迷走神经切断术主要用于治疗
A.硬脂醇220gB.十二烷基硫酸钠15gC.白凡士林250gD.羟苯乙酯0.25gE.丙二醇120g水加至1000g
"州都之官"指的是"传导之官"指的是
甲、乙、丙、丁设立了宏达有限责任公司(住所地为北京市海淀区)。甲以建设用地使用权认购出资500万元;乙以商标专用权认购出资600万元;丙以现金认购出资1000万元,但约定在公司成立2年内予以缴清;丁以一幅古画认购出资500万元。在公司的经营过程中,因资金紧
45,物业经营管理工作总结的主要内容大致是()。
读书时,即使书中的字都认得了,话全懂了,也未必就知道作书人的意思。意思是离不开语言的,但有些是语言文字所不能完全表达出来的。如果仅局限于语言文字,死抓住语言文字不放。那就成为死读书了。语言文字是帮助了解书的意思的拐棍。这就是古人所说的“得意忘言”,在读书中
Completethetablebelow:WriteNOMORETHANTHREEWORDSforeachanswer.
A、Toshowofftheirwealth.B、Tofeelgoodandhigh.C、Toregaintheirmemory.D、Tobedifferentfromother.B
最新回复
(
0
)