首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。 证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。 证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
admin
2021-01-25
61
问题
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。
证明:对任何a∈[0,1],有∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)。
选项
答案
设F(x)=∫
0
x
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(x)g(1),则F(x)在[0,1]上的导数连续,并且 F’(x)=g(x)f’(x)一f’(x)g(1)=f’(x)[g(x)一g(1)]。 由于x∈[0,1]时,g’(x)≥0,因此g(x)一g(1)≤0,又f’(x)≥0,故F’(x)≤0,即F(x)在[0,1]上单调递减,注意到 F(1)=∫
0
1
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt—f(1)g(1),=f(t)g(t)|
0
1
一f(1)g(1)=0, 故F(1)=0。因此x∈[0,1]时,F(x)≥0,对任何a∈[0,1],都有 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)。
解析
转载请注明原文地址:https://kaotiyun.com/show/Iux4777K
0
考研数学三
相关试题推荐
设随机变量X,Y相互独立,且X~P(1),Y~P(2),求P{max(X,Y)≠0)及P{min(X,Y)≠0}.
假设一批产品的不合格品数与合格品数之比为R(未知常数).现在按还原抽样方式随意抽取的n件中发现k件不合格品.试求R的最大似然估计值.
设来自总体X的简单随机样本X1,X2,…,Xn,总体X的概率分布为其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求(1)未知参数θ的最大似然估计量;(2)未知参数θ的矩估计量;(3)当样本值为1,1,2,1,3,2
设某种元件的使用寿命X的概率密度为f(x;θ)=其中θ>0为未知参数.又设x1,x2,…,xn是X的一组样本观测值,求参数θ的最大似然估计值.
[2006年]设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数.求:Y的概率密度函数fY(y);
[2014年]设随机变量X,Y的概率分布相同,X的概率分布为且X与Y的相关系数求P{X+Y≤1}.
试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αTi表示列向量αi的转置,i=1,2,…,n.
(12年)证明:(-1<χ<1).
随机试题
急性肾小球肾炎中医辨证分型除风水相搏外尚有
甲公司在一次省政府所举行的管道燃气供应的招标活动中中标,但参加投标活动的乙公司对此次招标活动不满,欲向省政府就此次招标活动申请听证。下列各选项中正确的是:
不论是由建设工程参与方的哪一方提出的设计变更,作出变更决定后都应由( )签发《工程变更单》,指示承包单位按变更的决定组织方可施工。
某新校区抗震模拟实验室工程,主体部分采用钢架结构,施工合同约定钢材由业主供料,其余材料均委托承包商采购。但承包商在以自有机械设备进行主体钢结构制作吊装过程中,由于业主供应钢材不及时导致承包商停工7天,则承包商计算施工机械窝工费时,应按()向业主提出
()是指由财政部发行的,有固定面值及票面利率,通过纸质媒介记录债权债务的国债。
学生的权利有哪些?
课程目标的基本特征有哪些?
某日,甲市振兴区某职业中学学生(14周岁)、吴某(15周岁)、郑某(女、14周岁)、汪某(16周岁)因网络赌博输钱,囊中羞涩,于是商量要弄点钱。见路人杜某随身携带挎包走来,决定抢包。吴某和郑某把风,汪某和周某上前拽走杜某挎包后欲逃跑,被杜某拽住。随即四人对
对违法犯罪分子的改造工作,是()的特殊预防工作。
某投资者在3个月后将获得一笔资金,并希望用该笔资金进行股票投资。但是,该投资者担心股市整体上涨从而影响其投资成本,在这种情况下,可采取()策略。
最新回复
(
0
)