首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)分别满足如下两个条件中的任何一个: (Ⅰ)f(x)在x=0处三阶可导,且=1; (Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(一1)f"(x)一xf’(x)=ex一1, 则下列说法正确的是
设f(x)分别满足如下两个条件中的任何一个: (Ⅰ)f(x)在x=0处三阶可导,且=1; (Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(一1)f"(x)一xf’(x)=ex一1, 则下列说法正确的是
admin
2017-10-23
57
问题
设f(x)分别满足如下两个条件中的任何一个:
(Ⅰ)f(x)在x=0处三阶可导,且
=1;
(Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(
一1)f"(x)一xf’(x)=e
x
一1,
则下列说法正确的是
选项
A、f(0)不是f(x)的极值,(0,f(0))不是曲线y=f(x)的拐点.
B、f(0)是f(x)的极小值.
C、(0,f(0))是曲线y=f(x)的拐点.
D、f(0)是f(x)的极大值.
答案
B
解析
(Ⅰ)由条件
=f’(0)=0.
用洛必达法则得
.
因
f"(x)=f"(0),若f"(0)≠0,则J=∞,与J=1矛盾,故必有f"(0)=0.再由f"’(0)的定义知
J=
f"’(0)=1,即f"’(0)=2.
因此,(0,f(0))是拐点.选(C).
(Ⅱ)已知f’(0)=0,现考察f"(0).由方程得
利用当x→0时的等价无穷小关系/
,并求极限即得
又f"(x)在x=0连续,故f"(0)=3>0.因此f(0)是f(x)的极小值.应选(B).
转载请注明原文地址:https://kaotiyun.com/show/LsX4777K
0
考研数学三
相关试题推荐
设f(x)可导,则当△x→0时,△y—dy是△x的().
设函数f(x)在[0,a]上连续,在(0,a)内二阶可导,且f(0)=0,f"(x)<0,则在(0,a]上().
设f(x)二阶连续可导,且f(0)=1,f(2)=3,f(2)=5,则∫01xf"(2x)dx=__________.
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设A,B是两个随机事件,且P(A)=0.4,P(B)=0.5,P(A|B)==________。
设α1,α2,…,αn为n个n维列向量,证明:α1,α2,…,αn线性无关的充分必要条件是
设有微分方程y’一2y=φ(x),其中φ(x)=,在(一∞,+∞)求连续函数y(x),使其在(一∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
求极限
变换下列二次积分的积分次序:
向半径为r的圆内随机抛一点,求此点到圆心之距离X的分布函数F(x),并求
随机试题
影响X线衰减的因素不包括
关于散射线及其影响因素的叙述,错误的是
A、连接两侧同名双尖牙、磨牙颊、舌尖构成的突向下的曲线B、连接两侧同名磨牙颊、舌尖构成的突向下的曲线C、可分为前后两段,前段平直,后段略凸向下D、前段平直,自尖牙、双尖牙及第一磨牙远中逐渐降低,第二、三磨牙颊尖又行上升E、第
海关行政裁定是一项比较新的海关管理制度。下列关于海关行政裁定制度作用的描述,错误的是:
根据《证券投资基金运作管理办法》及有关规定,债券基金应有()以上的资产投资于债券。
从整个社会考察,利息率的最高界限是()。
对于商品经济运行来讲,金融市场的主要功能有()。
油画的风景写生步骤是确定构图,确定色彩关系,解决空间层次关系。()
在中国古代文化中,最神圣的典礼,非封禅莫属。封禅是古代君王祭祀天地的典礼,是宣示天地认可帝王执政合法性的仪式。秦汉时期,在封禅的理论中,都是以泰山作为封禅地点的。在泰山上筑坛祭天叫做封,辟场祀地叫做禅。泰山成为封禅的圣地,不仅仅因为它的自然高度,更主要的是
Childrenmodelthemselveslargelyontheirparents.Theydosomainlythroughidentification.Childrenidentify【C1】______aparen
最新回复
(
0
)