首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
已知a是实数,函数f(χ)=(χ-a). (1)求函数f(χ)的单调区间; (2)若a>0,设g(a)为f(χ)在区间[0,2]上的最小值,写出g(a)的表达式.
已知a是实数,函数f(χ)=(χ-a). (1)求函数f(χ)的单调区间; (2)若a>0,设g(a)为f(χ)在区间[0,2]上的最小值,写出g(a)的表达式.
admin
2015-11-09
26
问题
已知a是实数,函数f(χ)=
(χ-a).
(1)求函数f(χ)的单调区间;
(2)若a>0,设g(a)为f(χ)在区间[0,2]上的最小值,写出g(a)的表达式.
选项
答案
根据题意,函数f(χ)的定义域为χ∈[0,+∞),f′(χ)=[*]. (1)f′(χ)=[*], 当a≤0时,在χ∈(0,+∞)内f′(χ)>0恒成立, 此时f(χ)的单调增区间为(0,+∞). 当a>0时,f′(χ)>0[*], f′(χ)<0[*], 此时f(χ)的单调增区间为([*],+∞),单调减区间为[0,[*]). 综上所述,当a≤0时,f(χ)的单调增区间为[0,+∞);当a>0时,f(χ)的单调增区间为([*],+∞),单调减区间为[0,[*]). (2)由(1)可知, a>0时,f(χ)在(0,[*])单调递减,在([*],+∞)内单调递增. 当[*]≤2,即0<a≤6时,g(a)=[*], 当[*]>2,即a>6时,g(a)=f(2)=[*]. 所以[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/M2Gq777K
本试题收录于:
小学数学题库教师公开招聘分类
0
小学数学
教师公开招聘
相关试题推荐
Differentweathermakespeoplefeeldifferent.Itinfluences(影响)healthintelligence(智力)andfeelings.InAugust,itisve
在教师的人格特征中,有两个重要特征对教学效果有显著的影响:一是教师的热心和同情心,二是教师______。
义务教育阶段的英语课程要面向全体学生,体现______的思想,在教学目标、教学内容、教学评价、教学资源的利用与开发方面都要考虑全体学生的要求。
如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且CB=5米,若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米?(参考数据:tan40°=0.84,sin40°=0.64,cos40°=)
已知a、b为实数,则下列各式中一定是正值的是().
学校开展读好书活动,小华读一本共有n页的故事书,若第一天她读了全书页数的,第二天读了余下页数的,则还没有读完的有()页.
古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16、…这样的数称为“正方形数”.从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是().
已知两圆x2+y2=10和(x-1)2+(y-3)2=20相交于A,B两点,则直线AB的方程是______________。
瑞瑞有一个小正方体,6个面上分别画有平行四边形、圆、等腰梯形、菱形、等边三角形和直角梯形这6个图形.抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是________。
分母是100的分数,叫作百分数.()
随机试题
医师的权利不包括
关于甲状旁腺,下列说法正确的是()。
下列哪些项目不应缴纳个人所得税?
根据《统计法》规定,任何单位和个人不得对外提供和泄露、不得用于统计以外目的的资料是()。
“假个贷”是指借款人和所购房屋都是真实存在的,只是购房行为为“假”。()
中央银行在公开市场卖出证券可能出现的结果为()
下列关于培训与开发的决策分析的叙述,正确的是( )。
不好的社会支持系统可能()。
人眼的光学系统跟传统的照相机是十分类似的。但照相机只是把外界景物的图像映在照相软片上,人眼却并不是把投射到视网膜上的图像______________地传给大脑,而是先对图像进行信息加工,抽取线段、角度、弧度、色度和明暗对比等包含重要信息的简单特征,并把它们
A、B、C、D、A
最新回复
(
0
)