已知a是实数,函数f(χ)=(χ-a). (1)求函数f(χ)的单调区间; (2)若a>0,设g(a)为f(χ)在区间[0,2]上的最小值,写出g(a)的表达式.

admin2015-11-09  18

问题 已知a是实数,函数f(χ)=(χ-a).
    (1)求函数f(χ)的单调区间;
    (2)若a>0,设g(a)为f(χ)在区间[0,2]上的最小值,写出g(a)的表达式.

选项

答案根据题意,函数f(χ)的定义域为χ∈[0,+∞),f′(χ)=[*]. (1)f′(χ)=[*], 当a≤0时,在χ∈(0,+∞)内f′(χ)>0恒成立, 此时f(χ)的单调增区间为(0,+∞). 当a>0时,f′(χ)>0[*], f′(χ)<0[*], 此时f(χ)的单调增区间为([*],+∞),单调减区间为[0,[*]). 综上所述,当a≤0时,f(χ)的单调增区间为[0,+∞);当a>0时,f(χ)的单调增区间为([*],+∞),单调减区间为[0,[*]). (2)由(1)可知, a>0时,f(χ)在(0,[*])单调递减,在([*],+∞)内单调递增. 当[*]≤2,即0<a≤6时,g(a)=[*], 当[*]>2,即a>6时,g(a)=f(2)=[*]. 所以[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/M2Gq777K
0

最新回复(0)