首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
“中心对称和中心对称图形”的教学目的主要有 ①知道中心对称的概念,能说出中心对称的定义和关于中心对称的两个图形的性质。 ②会根据关于中心对称图形,的性质定理2的逆定理来判定两个图形关于一点对称;会画与已知图形关于一点成中心对称的图形。 此外,通过复习图形轴
“中心对称和中心对称图形”的教学目的主要有 ①知道中心对称的概念,能说出中心对称的定义和关于中心对称的两个图形的性质。 ②会根据关于中心对称图形,的性质定理2的逆定理来判定两个图形关于一点对称;会画与已知图形关于一点成中心对称的图形。 此外,通过复习图形轴
admin
2018-05-10
79
问题
“中心对称和中心对称图形”的教学目的主要有
①知道中心对称的概念,能说出中心对称的定义和关于中心对称的两个图形的性质。
②会根据关于中心对称图形,的性质定理2的逆定理来判定两个图形关于一点对称;会画与已知图形关于一点成中心对称的图形。
此外,通过复习图形轴对称,并与中心对称比较,渗透类比的思想方法;用运动的观点观察和认识图形,渗透旋转变换的思想。
通过题干来完成下列教学设计。
给出本课程的课题引入;
选项
答案
课题引入:(引导性材料) 想一想:怎样的两个图形叫作关于某直线成轴对称?成轴对称的两个图形有什么特点? (帮助学生复习轴对称的有关知识,为中心对称教学做准备) [*] 画一画:如图1(1),已知点P和直线l,画出点P关于直线l的对称点P’;如图1(2),已知线段MN和直线a,画出线段MN关于直线a的对称线段M’N’。 (通过画图形进一步巩固和加深对轴对称的认识) 上述问题由学生回答,教师作必要的提示,并归纳总结成下表: [*] 观察与思考:图2所示的图形关于某条直线成轴对称吗?如果是,画出对称轴;如果不是,说明理由。 [*] (教师把图2的两个图形制成投影片或教具,学生仔细观察后,能发现这两个图形都不是轴对称。然后,教师适时提出问题:这两个图形能不能重合?怎样才能使这两个图形重合呢?让学生观察、探究、讨论,教师可以直观地演示中心对称变换的过程,让学生发现:把其中一个图形统一特殊点旋转180度后能与另一个图形重合。) 问题1:你能举出1—2个实例或实物,说明它们也具有上面所说的特性吗? 说明:学生自己举例有助于他们感性地认识中心对称的意义。然后,教师指出:具有这种特性的图形叫作中心对称图形,并介绍对称中心,对称点等概念。 问题2:你能给“中心对称”下一个定义吗? 说明与建议:学生下定义会有困难,教师应及时修正,并给出明确的定义,然后指出定义中的三个要点:①有一个对称中心——点;②图形绕中心旋转180度;③旋转后与另一图形重合。把这三要点填入引导性材料中的空表内,在顶空格内写上“中心对称”字样,以利于写“轴对称”进行比较。
解析
转载请注明原文地址:https://kaotiyun.com/show/M8tv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
王老师在校本教研中,为年轻教师开设了一节示范课,内容是《文化生活》第一单元中的《体味文化》。以下是本节课第一目“文化万花筒”的教学片段:探究活动一:多媒体视频展示国内外不同的艺术形式:芭蕾舞、歌剧、黄梅戏、杂技等。【教师提问】(1)你最喜欢哪种艺术
某景区利用当地著名佛教庙宇进行宗教文化资源的开发利用,取得了较好的经济效益,同时也出现了商业开发过度、管理不规范以及“僧人”摆地摊、占卦算命等问题,当地政府为此制定景区游览环境综合整治活动方案,进行整改。据此回答18-19题。当地政府对该景区的综合整治
材料:某教师在进行“诚实守信”教学中,先以歌曲《雾里看花》导入课题,然后请同学们把自己调查收集的有关有奖销售的资料、案例给大家分享,同学们踊跃发言。学生一边介绍一边相互传阅,课堂热热闹闹,兴趣盎然。下课的铃声响了,学生仍意犹未尽,教师宣布下节课继续进行交流
请阅读下面的教学内容和素材,按要求完成教学设计。教学内容:自中华人民共和国成立也别是改革开放以来,我们抓住历史机遇,集中精力进行进行经济建设。我国的社会主义现代化事业,取得了举世瞩目的巨大成就,中国人民富起来、国家强起来了,社会主义的优越性得到了初步显
根据以下教学内容进行教学设计。(1)维护受教育权利受教育是法律赋予我们的基本权利,是我们成长和发展的基础。但是,在现实生活中,由于各种原因,侵犯我们受教育权的行为时有发生。当我们的受教育权被他人剥夺或受到侵犯时,我们可以采用非诉讼方式或诉讼方式予以维护
1902年奥地利科学家发明了廉价、清洁、方便和耐用的塑料袋,广泛应用于社会生活各个方面,被誉为科技界的“白色革命”。在2002年塑料袋“百岁诞辰”之时,它因对生态环境的严重污染和破坏而被环保组织评为“20世纪人类最糟糕的发明”。现今,“远离塑料袋”“禁用塑
某科技公司凭借互联网思维、扁平灵活的管理架构和独特的供应链能力,成为互联网时代的新宠,仅用5年时间跃升为世界第三大智能手机生产商。材料表明()。
下面4个矩阵中,不是正交矩阵的是()。
“数列”是高中数学必修5的内容。《普通高中数学课程标准(实验)》要求学生能“通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型;在具体的问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题。”(1
已知矩阵,求曲线y2-x+y=0在矩阵M-1对应的线性变换作用下得到的曲线方程。
随机试题
下列数值中最小的数是_____。
大多数临终病人,尤其是恶性肿瘤晚期病人,主要症状是()
骨盆入口狭窄时,不易发生的情况是
高层建筑的排烟设施应分为()。
项目结构分解要考虑项目的特点、工程实施部署和拟采用的合同结构等方面的因素,有利于()。
招标投标活动应当遵循()的原则。
A、violencedreamsB、dreamsoffindingmoneyC、dreamsaboutflyingorfloatingintheairD、dreamsabouttheseaD
MannersnowadaysinmetropolitancitieslikeLondonarepracticallynon-existent.Itisnothingforabig,strongschoolboytoe
Whatisthenewsmainlyabout?
Youcannotmasteraforeignlanguage______youworkhardatit.
最新回复
(
0
)