首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。 (Ⅰ)计算PTDP,其中P= (Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明结论。
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。 (Ⅰ)计算PTDP,其中P= (Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明结论。
admin
2017-01-21
55
问题
设D=
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。
(Ⅰ)计算P
T
DP,其中P=
(Ⅱ)利用(Ⅰ)的结果判断矩阵B—C
T
A
—1
C是否为正定矩阵,并证明结论。
选项
答案
[*] (Ⅱ)由(Ⅰ)中结果知矩阵D与矩阵M=[*]合同,又因D是正定矩阵,所以 矩阵M为正定矩阵,从而可知M是对称矩阵,那么B—C
T
A
—1
C是对称矩阵。 对m维零向量x=(0,0,…,0)
T
和任意n维非零向量y=(y
1
,y
2
,y
n
)
T
,都有 (x
T
,y
T
)[*] 可得 y
T
(B—C
T
A
—1
C)y>0, 依定义,y
T
(B—C
T
A
—1
C)y为正定二次型,所以矩阵B—C
T
A
—1
C为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/M9H4777K
0
考研数学三
相关试题推荐
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
设向量组α1,α2,…,αs线性无关,作线性组合β1=α1+μ1αs,β2=α2+μ2αs,…,βs-1=αs-1+μs-1αs,则向量组β1,β2,…,βs-1线性无关,其中s≥2,μi为任意实数.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).利用(1)的结论计算定积分;
已知二次型f(x1,x2,x3)=x12+5x22+x32+2x1x2+2ax2x3为正定二次型,则a的取值范围________.
设矩阵已知线性方程组AX=β有解但不唯一,试求(I)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=O和(Ⅱ)ATAX=0必有().
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是().
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
设B=(β1,β2,β3),其βi(i=1,2,3)为三维列向量,由于B≠0,所以至少有一个非零的列向量,不妨设β1≠0,由于AB=A(β1,β1,β3)=(Aβ1,Aβ2,Aβ3)=0,→Aβ1=0,即β1为齐次线性方程组AX=0的非零解,于是系数矩阵的
已知且AX+X+B+BA=0,求X2006。
随机试题
A、Itisaperfecttouristdestination.B、Itisownedbythelocalgovernment.C、IthasbeenboughtbyanAmerican.D、Ithasbeen
客观事物不在眼前时,人们在大脑中重现出来的事物的形象称为()
由一般原理推导出关于个别情况的结论,这种论证方法是()
腰椎的常规摄影位置是
A.三七B.商陆C.合欢皮D.甘草E.黄芪具有抗炎、抗胃溃疡作用的是()。
案例【背景资料】某公司以BT方式总承包建设消纳量为200t/d的大型城市垃圾填埋场工程,地点位于城郊山坳。防渗层为HDPE单层防渗结构,聚乙烯膜上保护层为无纺土工布,膜下保护层为压实土基。聚乙烯膜由建设方指定厂商供应。施工项目部编制了防
在原始凭证上书写阿拉伯数字,错误的做法是()。(4.2)
投保人若错过保险费的支付期,除合同另有约定外,应在规定期限后的( )日内支付,否则保险人可以中止合同。
在接待工作中,决定介绍的先后顺序的主要依据是()。
下列关于述职报告的作用,说法正确的是()。
最新回复
(
0
)