首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有一阶连续导数,f(0)=0,且表达式[xy(1+y)-f(x)y]dx+[f(x)+x2y]dy为某可微函数u(x,y)的全微分.求f(x)及u(x,y).
设f(x)具有一阶连续导数,f(0)=0,且表达式[xy(1+y)-f(x)y]dx+[f(x)+x2y]dy为某可微函数u(x,y)的全微分.求f(x)及u(x,y).
admin
2019-01-24
69
问题
设f(x)具有一阶连续导数,f(0)=0,且表达式[xy(1+y)-f(x)y]dx+[f(x)+x
2
y]dy为某可微函数u(x,y)的全微分.求f(x)及u(x,y).
选项
答案
由题设知存在可微函数u(x,y),使 du(x,y)=[xy(1+y)-f(x)y]dx+Ef(x)+x
2
y]dy, 于是知[*] 又因f(x)具有一阶连续导数,故[*]连续且相等,于是有 [*] x+2xy-f(x)=f'(x)+2xy, 即 f'(x)+f(x)=x, 此为一阶线性微分方程,结合条件f(0)=0解得f(x)=x-1+e
-x
. 所以 du(x,y)=[xy(1+y)-y(x-1+e
-x
)]dx+(x-1+e
-x
+x
2
y)dy =(xy
2
+y-ye
-x
)dx+(x-1+e
-x
+x
2
y)dy. 由du(x,y)的表达式求u(x,y)有多种方法. 法一 凑原函数法.此方法有技巧性,要求读者对用全微分形式不变性求微分相当熟练. du(x,y)=(xy
2
+y-ye
-x
…)dx+(x-1+e
-x
+x
2
y)dy =(xy
2
dx+x
2
ydy)+(-ye
-x
dx+e
-x
dy)+(ydx+xdy)-dy =xyd(xy)+d(ye
-x
)+d(xy)-dy [*] 所以[*](C为任意常数). 法二 偏积分法.由du(x,y)的表达式知 [*] 其中φ(y)对y可微.由题设知[*] 于是有 x
2
y+x+e
-x
+φ'(y)=x-1+e
-x
+x
2
y, 则φ'(y)=-1,即φ(y)=-y+C(C为任意常数). 所以[*](C为任意常数). 法三 用第二型曲线积分求原函数.由所给的du(x,y)知,[*]中的 P(x,y)与Q(x,y)在全平面具有连续的一阶偏导数且[*]. 故可以用第二型曲线积分,取起点为(0,0)较方便,计算 [*] 由于此曲线积分与路径无关,取折线(0,0)→(0,y)→(x,y),于是 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/McM4777K
0
考研数学一
相关试题推荐
设AX=A+2X,其中,求X.
设试证明:P(A)+P(B)一P(C)≤1.
设点A(1,一1,1),B(-3,2,一1),C(5,3,一2),判断三点是否共线,若不共线求过三点的平面的方程.
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:两个球颜色相同.
将f(x)=展开成傅里叶级数.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数,证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
设X在区间[一2,2]上服从均匀分布,令Y=,求:Y,Z的联合分布律;
求函数Y=(X一1)的单调区间与极值,并求该曲线的渐近线.
二元函数z=f(x,y)在点(x0,y0)处连续是函数z=f(x,y)在该点处两个偏导数f’x(x0,y0),f’y(x0,y0)都存在的()
在测量反应时间中假设反应时间服从正态分布,一心理学家估计的标准差是0.05秒.为了以95%的置信度使他对平均反应时间的估计误差不超过0.01秒,应取的样本容量n为多少?
随机试题
小儿腹泻时,以下处理不正确的有
下列叙述错误的是
北京地区某沟谷中稀性泥石流阻力系数为1.67,洪水时沟谷过水断面面积为600m2,湿周长为109.3m,泥石流水面纵坡为9.2%,该泥石流流速为()。
在港航工程混凝土中掺入聚丙烯纤维,主要作用是提高混凝土的()。
下列企业或者个人符合税法中所指的具有关联关系的是()。
下列各项审计程序中,()可以帮助注册会计师证实X公司应收票据在财务报表中列报与披露的完整性认定。
租户和业主之间可能要协商一个()作为计算百分比租金的基础。
以下人物及其成就说法不正确的是()。
根据《全国人大组织法》规定,在必要的时候,下列哪一机构有权决定全国人民代表大会会议秘密举行?()
以下关于静态路由的描述中,哪项是错误的?——
最新回复
(
0
)