首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设不恒为常数的函数f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(c)=f(b).其中c为(a,b)内的一点,试证:存在点ξ∈(a,b),使得f"(ξ)
设不恒为常数的函数f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(c)=f(b).其中c为(a,b)内的一点,试证:存在点ξ∈(a,b),使得f"(ξ)
admin
2017-07-26
73
问题
设不恒为常数的函数f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(c)=f(b).其中c为(a,b)内的一点,试证:存在点ξ∈(a,b),使得f"(ξ)<0.
选项
答案
由题设知,f(x)在[a,c]和[c,d]上分别满足洛尔定理的全部条件,由洛尔定理,存 在点a
1
∈(a,c),b
1
∈(c,b),使得f’(a
1
)=f’(b
1
)=0. 又f’(x)在[a
1
,b
1
]上可导且不恒等于零,所以,必存在点a
2
∈(a
1
,b
1
),使得f’(a
2
)>0,或存在点a
3
∈(a
1
,b
1
),使f’(a
3
)<0. 当存在点a
2
∈(a
1
,b
1
),使得f’(a
2
)>0时,由拉格朗日中值定理,存在点ξ∈(a
2
,b
1
), 使得 [*] 当存在点a
3
∈(a
3
,b
1
),使得f’(a
3
)<0时,由拉格朗日中值定理,存在点ξ∈(a
3
,b
1
), 使得 [*] 综上可知,存在点ξ∈(a
1
,b
1
)[*](a,b),使f"(ξ)<0.
解析
由题设知,可在[a,c],[c,b]上分别对f(x)用洛尔定理,存在点a
1
∈(a,c),b
1
∈(c,6),使f’(a
1
)=f’(b
1
)=0.但f(x)不恒等于常数,可知f’(x)≠0.从而可知,f’(x)在[a
1
,b
1
]上可导,不恒等于零,且f’(a
1
)=0,f’(b
1
)=0.然后可用拉格朗日中值定理证明存在点ξ∈(a
1
,b
1
),使得f"(ξ)<0.
转载请注明原文地址:https://kaotiyun.com/show/MuH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
证明:方程x=a+bsinx(其中a>0,b>0)至少有一个正根,并且它不超过a+b.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,证明:(I)存在εi∈(a,b),使得f(εi)=f〞(εi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f〞(η).
设z=f(u,v,x),u=φ(x,y),v=ψ(y),求复合函数z=f(φ(x,y),φ(y),x)的偏导数
设其导函数在x=0处连续,则λ的取值范围是__________.
试证明函数在区间(0,+∞)内单调增加.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数,a,b满足条件0≤a≤b≤a+b≤c.
设函数f(r)当r>0时具有二阶连续导数,令,则当x,y,z与t不全为零时=
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设都是正项级数,试证:(1)若收敛;(2)若收敛;(3)若都收敛;(4)若收敛。
随机试题
A.先煎B.后下C.包煎D.另煎E.与他药同煎(2005年第88,89题)细辛入汤剂宦()
患者,男,19岁,既往有癫痫病史2年,长期服用卡马西平控制良好。1周前,患者无明显诱凶感胸骨后烧灼感,无腹痛、腹泻、恶心、呕吐等。查体:腹平软,无压痛及反跳痛,肝脾肋下未触及,肠鸣音正常。胃镜检查提示:胃食管反流病。医嘱:西咪替丁胶囊,口服,一次400mg
在Word2010中,查找范围的默认项是查找___________。
在下列哪些情况下使用作品,可以不经著作权人许可,不向其支付报酬?( )
在某建设项目单因素敏感性的分析图中,三个不确定因素的敏感程度由大到小排序是()。
关于全玻幕墙安装的技术要求,下列叙述正确的是()。
代理理论认为,高支付率的股利政策有助于降低企业的代理成本,但同时也会增加企业的外部融资成本。( )
简述信度和效度的关系。
形成性评价与终结性评价的主要差异在于()。
A、 B、 C、 B传达信息的陈述句→与得到信息相符的回答
最新回复
(
0
)