首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)上连续,满足0≤f(x)≤x,x∈[0,+∞),设a1≥0,an+1=f(an)(n=1,2,…),证明: 若条件改为0≤f(x)<x,x∈(0,+∞)则上一小题中的t=0.
设f(x)在[0,+∞)上连续,满足0≤f(x)≤x,x∈[0,+∞),设a1≥0,an+1=f(an)(n=1,2,…),证明: 若条件改为0≤f(x)<x,x∈(0,+∞)则上一小题中的t=0.
admin
2021-06-16
56
问题
设f(x)在[0,+∞)上连续,满足0≤f(x)≤x,x∈[0,+∞),设a
1
≥0,a
n+1
=f(a
n
)(n=1,2,…),证明:
若条件改为0≤f(x)<x,x∈(0,+∞)则上一小题中的t=0.
选项
答案
由a
n
≥0及[*]a
n
=t,知t≥0,若t≠0,则t∈(0,+∞),且f(t)<t,但由2可知f(t)=t,矛盾,所以t=0.
解析
【注意】这是一个题源,若令f(x)=sinx,便得到了如下命题:
设数列{x
n
}满足0<x
1
<π,x
n+1
=sinx
n
(n=1,2,…)
(1)证明
x
n
存在,并求该极限。
(2)计算
.
解:(1)由于当0<x<π时,0<sinx<x,所以当0<x
n
<π时,0<x
n+1
=sinx
n
<x
n
<π,已知0<x
1
<π,故由数学归纳法知对一切n=1,2,...,有
0<x
n+1
=sinx
n
<x
n
,
即{x
n
}单调减少且x
n
>0.
由单调有界准则知
x
n
存在,记为a,则a≥0,令n→∞,将x
n+1
=sinx
n
两边取极限,得a=sina,易见a=0是它的一个解。
另一方面,若a>0,必有a>sina,所以由a=sina只能得到唯一解a=0,即有
x
n
=0.
(2)因为
又由(1)知当n→∞时,x
n
→0,故考虑函数极限
因为
.
转载请注明原文地址:https://kaotiyun.com/show/N6y4777K
0
考研数学二
相关试题推荐
当x→π时,若有则A=_______,k=______.
设a>0,b>0都是常数,则=_______
微分方程y’+ytan=cosx的通解为_______.
设函数y=y(x)由确定,则y=y(x)在x=ln2处的法线方程为________
已知极坐标下的累次积分,其中a>0为常数,则I在直角坐标系下可表示成______。
设f(χ)=,若f(χ)在χ=0处可导且导数不为零,则k为().
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,C表示任意常数,则线性方程组Ax=b的通解x为
设函数f(x)对任意的x均满足等式f(1+x)=af(x),且有f’(0)=b,其中a,b为非零常数,则()
设为正项级数,则下列结论正确的是()
随机试题
常用的描述样本离散程度的变量不包括
Thefirsttruepieceofsportsequipmentthatmaninventedwastheball.InancientEgypt,aseverywhere,pitchingstoneswa
激素替代治疗的禁忌证没有
扩张动脉而治疗心衰的药物是扩张静脉而治疗心衰的药物是
(2011年)案情:陈某因没有收入来源,以虚假身份证明骗领了一张信用卡,使用该卡从商场购物10余次,金额达3万余元,从未还款。(事实一)陈某为求职,要求制作假证的李某为其定制一份本科文凭。双方因价格发生争执,陈某恼羞成怒,长时间勒住李某脖子,致其
某上市公司的资产为1000万元,其中债务资本为600万元,去年该公司的税后净利润为160万元,总资产周转率为1.6次/年,那么该公司的年销售净利润率为()。
下列各项中,属于期间费用的有()。
皮肤美是人体美的一种重要表征。面部皮肤是最引人注目的地方,健美的面部皮肤可增添人的姿色,反映人体的健康状况与精神面貌。中国大多数人属黄色人种,光洁柔润、白里透红的颜面,是历来为人们所称道、羡慕和追求的。关于这段话,下列说法不正确的是()。
聪明愚蠢
下列()不属于管理信息系统开发的前提和策略。
最新回复
(
0
)