首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切χ∈Rn,有|χTAχ|≤cχTχ. (2)若A正定,则对任意正整数k,Ak也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切χ∈Rn,有|χTAχ|≤cχTχ. (2)若A正定,则对任意正整数k,Ak也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
admin
2016-06-30
64
问题
设A是n阶实对称矩阵.证明:
(1)存在实数c,使对一切χ∈R
n
,有|χ
T
Aχ|≤cχ
T
χ.
(2)若A正定,则对任意正整数k,A
k
也是对称正定矩阵.
(3)必可找到一个数a,使A+aE为对称正定矩阵.
选项
答案
(1)设A的特征值为λ
1
,λ
2
,…,λ
n
.令c=max{|λ
1
|,|λ
2
|,…,|λ
n
|},则存在正交变换χ=Py,使χ
T
Aχ=[*]λ
i
y
i
2
,且y
T
y=χ
T
χ,故|χ
T
Aχ|=[*]=cy
T
y=cχ
T
χ. (2)设A的特征值为λ
1
,…,λ
n
,则λ
i
>0(i=1,…,n),于是,由A
k
的特征值为λ
1
k
,…,λ
n
k
,它们全都大于0,可知A
k
为正定矩阵. (3)因为(A+aE)
T
=A+aE,所以A+aE对称.又若A的特征值为λ
1
,…,λ
n
,则A+aE的特征值为λ
1
+a,…,λ
n
+a.若取a=max{|λ
1
|+1,…,|λ
n
|+1},则λ
i
+a≥λ
i
+|λ
i
|+1≥1,所以A+aE正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/N9t4777K
0
考研数学二
相关试题推荐
设f(x)在x=2处连续,且[2f(3-x)-3]/(x-1)=-1,则曲线y=f(x)在点(2,f(2))处的切线方程为________.
设A,B是任两个随机事件,下列事件中与A+B=B不等价的是().
设X1,…,X9为来自正态总体X~N(μ,σ2)的简单随机样本,令Y1=1/6(X1+…+X6),Y2=1/3(X7+X8+X9),S2=证明:Z~t(2).
设函数y=y(x)由方程2y3-2y2+2xy-x2=1所确定,试求y=y(x)的驻点,并判定它是否为极值点.
设ψ(x)是x到离x最近的整数的距离,求∫0100ψ(x)dx。
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
n阶方阵A具有n个不同的特征值是A与对角阵相似的().
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均为实对称矩阵时,试证(I)的逆命题成立.
(2000年试题,六)设函数(1)当n为正整数,且nπ≤x
随机试题
根据GB/T15169—94《钢熔化焊手焊工资格考试方法》的规定,试件进行弯曲试验时,如采用辊筒弯曲,其弯轴直径可为试件厚度的4倍。()
下列对医德修养的意义,表述正确的是
下列不属于辨证内容的是
总会计师负责组织的工作主要包括()。
下列关于金融工具和金融市场的叙述,错误的是( )。
李先生预测甲股票价格将上涨,他于2014年3月1日与刘女士订立甲股票买进合约,合约规定有效期限为六个月,李先生可按10元/股的价格买进30130股甲股票,期权费为0.5元/股。2014年4月1日甲股票价格为12元/股,2014年6月1日甲股票价格为10.5
发料凭证汇总表属于()。
昨天冬冬和妞妞都病了,病症也类似。平日两人每天下午都在一起玩,因此,两人可能患的是同一种病,冬冬的病症有点像链球菌感染,但他患的肯定不是这种病。因此,妞妞患的病也肯定不是链球菌感染。以下哪项最为准确地概括了上述论证中的漏洞?
Thefirsttimecouldhavebeenchalkeduptocharmingidiosyncrasy.Thesecondseemedlikeanefforttobringsomelevitytoac
A、Consideration.B、Courage.C、Fairness.D、Awareness.D根据句(6)可知,当主持人问苏珊对于那些要来美国但是并不知道她所说的那些讨论风格的人有什么实际的建议时,苏珊认为意识到讨论风格的不同是最重要的,因此
最新回复
(
0
)