首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切χ∈Rn,有|χTAχ|≤cχTχ. (2)若A正定,则对任意正整数k,Ak也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切χ∈Rn,有|χTAχ|≤cχTχ. (2)若A正定,则对任意正整数k,Ak也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
admin
2016-06-30
43
问题
设A是n阶实对称矩阵.证明:
(1)存在实数c,使对一切χ∈R
n
,有|χ
T
Aχ|≤cχ
T
χ.
(2)若A正定,则对任意正整数k,A
k
也是对称正定矩阵.
(3)必可找到一个数a,使A+aE为对称正定矩阵.
选项
答案
(1)设A的特征值为λ
1
,λ
2
,…,λ
n
.令c=max{|λ
1
|,|λ
2
|,…,|λ
n
|},则存在正交变换χ=Py,使χ
T
Aχ=[*]λ
i
y
i
2
,且y
T
y=χ
T
χ,故|χ
T
Aχ|=[*]=cy
T
y=cχ
T
χ. (2)设A的特征值为λ
1
,…,λ
n
,则λ
i
>0(i=1,…,n),于是,由A
k
的特征值为λ
1
k
,…,λ
n
k
,它们全都大于0,可知A
k
为正定矩阵. (3)因为(A+aE)
T
=A+aE,所以A+aE对称.又若A的特征值为λ
1
,…,λ
n
,则A+aE的特征值为λ
1
+a,…,λ
n
+a.若取a=max{|λ
1
|+1,…,|λ
n
|+1},则λ
i
+a≥λ
i
+|λ
i
|+1≥1,所以A+aE正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/N9t4777K
0
考研数学二
相关试题推荐
设事件A,B独立.证明:事件都是独立的事件组.
设A,B是任两个随机事件,下列事件中与A+B=B不等价的是().
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
已知=∫0+∞4x2e-2xdx,求常数a的值。
已知f(x)=x2-x∫02f(x)dx+2∫01f(x)dx,试求f(x).
下列各题中均假定f’(x0)存在,按照导数定义,求出下列各题中A的值。
设某商品从时刻0到时刻t的销售量为x(t)=kt,t∈[0,T](K>0),欲在T时将数量为A的该商品售完,试求:t时的商品剩余量,并确定k的值。
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的属于λ1,λ2的特征向量,则().
随机试题
trademark
集权
狡兔有三窟,仅得免其死耳。得:
男,78岁,呕吐,腹胀2l小时,无明显腹痛,既往有消化道溃疡病史,上腹部压痛,腹肌紧张,血压80/50mmHg,脉搏108次/min,血淀粉酶250U,血钙1.7mmol/L。影响预后的因素有
A.病原体被清除B.显性感染C.隐性感染D.病原携带状态E.潜伏性感染感染过程中最常见的表现是
在我国的利率体系中,中央银行利率主要包括()。
班会一般可以分为()三类。
在知识经济勃兴的今天,阅读已不仅仅关乎个人的修身养性,更攸关一个国家的国民素质和竞争力。因为,阅读习惯和阅读能力的欠缺将极大地损害人们的想象力和创造力,而想象力和创造力是一个国家一个民族永葆活力的源泉。有一个严峻的事实我们不得不面对:当代世界的知识创新、科
根据以下资料,回答下列问题。2011年一季度我国建筑业产值为16096.4亿元。其中,建筑工程产值14220.0亿元,安装工程产值1405.2亿元,其他471.2亿元。华东六省一市相关数据见下表。下列判断不正确的有(
关系数据库规范化的目的是()
最新回复
(
0
)