首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是在区间[1,+∞)上单调减少且非负的连续函数, 证明:(1)存在;(2)反常积分∫1+∞f(x)dx与无穷级数同敛散.
设f(x)是在区间[1,+∞)上单调减少且非负的连续函数, 证明:(1)存在;(2)反常积分∫1+∞f(x)dx与无穷级数同敛散.
admin
2016-09-13
79
问题
设f(x)是在区间[1,+∞)上单调减少且非负的连续函数,
证明:(1)
存在;(2)反常积分∫
1
+∞
f(x)dx与无穷级数
同敛散.
选项
答案
(1)由f(x)单调减少,故当k≤x≤k+1时, f(k+1)≤f(x)≤f(k). 两边从k到k+1积分,得 ∫
k
k+1
f(k+1)dx≤∫
k
k+1
f(x)dx≤∫
k
k+1
f(k)dx, 即f(k+1)≤∫
k
k+1
f(x)dx≤f(k). [*] 即{a
n
}有下界.又 a
n+1
-a
n
=f(n+1)-∫
n
n+1
f(x)dx≤0,即数列{a
n
}单调减少,所以[*]存在. (2)由于f(x)非负,所以∫
1
x
f(t)dt为x的单调增加函数.当n≤x≤n+1时, ∫
1
n
f(t)dt≤∫
1
x
f(t)dt≤∫
1
n+1
f(t)dt, 所以 ∫
1
+∞
f(x)dx收敛<=>[*]f(x)dx存在. 由(1)知[*]存在,所以 [*]f(k)存在<=>[*]f(x)dx存在. 从而推知 ∫
1
+∞
f(x)dx<=>[*]f(n)收敛.
解析
转载请注明原文地址:https://kaotiyun.com/show/NDT4777K
0
考研数学三
相关试题推荐
中国共产党决定对民族资产阶级实行又联合、又斗争的方针的根本原因和依据,在于民族资产阶级的()。
[*]
A、 B、 C、 D、 D
N件产品中有N1件次品,从中任取n件(不放回),其中1≤n≤N.(1)求其中恰有k件(k≤n且k≤N1)次品的概率;(2)求其中有次品的概率;(3)如果N1≥2,n≥2,求其中至少有两件次品的概率.
求下列图形的面积:(1)y=x2-x+2与通过坐标原点的两条切线所围成的图形;(2)y2=2x与点(1/2,1)处的法线所围成的图形.
将函数f(x)=e2x,x∈[0,π]展开成余弦级数.
图2.14中有三条曲线a,b,c,其中一条是汽车的位置函数的曲线,另一条是汽车的速度函数的曲线,还有一条是汽车的加速度函数的曲线,试确定哪条曲线是哪个函数的图形,并说明理由.
证明如下的平行四边形法则:2(|a|2+|b|2)=|a+b|2+|a-b|2,说明这一法则的几何意义.
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设f(x)为[0,1]上的单调增加的连续函数,证明
随机试题
在土地登记查询中,()是对查询人的具体要求。
在工程网络计划中,关键工作的特点是()。
建筑安装工程人工费包括()。
在合同审核的环节,规范的操作应该包括()。
甲公司是一家上市公司,以生产农药和化肥为主业,已发行股份总额为26000万股。2011年甲公司成功发行3年期的公司债券5000万元,截至2012年12月31日,甲公司经审计的相关财务资料如下:2013年2月,甲公司召开股东大会讨论董事会提交的两
劳动者患病,(),不能从事原工作,也不能从事用人单位另行安排的工作的,用人单位可以解除劳动合同。
明朝的会审制度有()。
下列程序段的执行结果为______。I=0ForG=10To19Step3I=I+1NextGPrintI
Impatiencecharacterizesyoungintellectualworkers.Theywanttomaketheirmark【31】______.Soit’simportanttoget【32】______t
ToallAmericans,anotherbasic(36)______intheirconstitutionistheBillofrights,adoptedin1971.Thisconsistsof10ver
最新回复
(
0
)