首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=[α1,α2,α3,α4],且η1=[1,1,1,1]T, η2=[0,1,0,1]T是齐次线性方程组Ax=0的基础解系,则( ).
设A=[α1,α2,α3,α4],且η1=[1,1,1,1]T, η2=[0,1,0,1]T是齐次线性方程组Ax=0的基础解系,则( ).
admin
2016-12-09
45
问题
设A=[α
1
,α
2
,α
3
,α
4
],且η
1
=[1,1,1,1]
T
, η
2
=[0,1,0,1]
T
是齐次线性方程组Ax=0的基础解系,则( ).
选项
A、α
1
,α
3
线性无关
B、α
2
,α
4
线性无关
C、α
4
能被α
2
,α
3
线性表示
D、α
1
,α
2
,α
3
线性无关
答案
C
解析
因为η
1
,η
2
为齐次线方程组Ax=0的基础解系,可知基础解系含有n一r=2个向量,其中n=4为齐次方程组未知量的个数,r为系数矩阵A的秩,所以
r=n一2=2.因此A=[α
1
,α
2
,α
3
,α
4
]中任意3个向量都线性相关,故D不正确.由Aη
2
=0得α
2
+α
4
=0,可见α
2
,α
4
线性相关,故B不正确.再由α
2
+α
4
=0可知,α
4
可以被α
2
线性表示,则α
4
可被α
2
,α
3
线性表示,故C正确.由Aη
1
=0,得
α
1
+α
2
+α
3
+α
4
=0.
又由Aη
2
=0得α
2
+α
4
=0,所以α
1
+α
3
=0.于是α
1
,α
3
线性相关,故A不正确.仅C入选.
转载请注明原文地址:https://kaotiyun.com/show/OqbD777K
0
考研数学二
相关试题推荐
贾诩、王进、陈光蕊、柳湘莲分别是()中的人物。
“临川四梦”是由明代戏剧作家、文学家汤显祖所作,其中不包括()。
给定资料1.2017年中央一号文件是新世纪以来指导“三农”工作的第14个中央一号文件。这份题为《中共中央国务院关于深入推进农业供给侧结构性改革加快培育农业农村发展新动能的若干意见》的文件,首次提出“田园综合体”概念,指出“支持有条件的乡村建设以农民合
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
用红、黄两色鲜花组成的实心方阵(所有花盆大小完全相同),最外层是红花,从外往内每层按红花、黄花相间摆放。如果最外层一圈的正方形有红花44盆,那么完成造型共需黄花()。
格赛尔的同卵双生子爬梯实验证明了人身心发展的重要条件是
设A为m×n矩阵,且r(A)=r(A)r<n,其中=(A┇b).(Ⅰ)证明方程组AX=b有且仅有,n-r+1个线性无关解;(Ⅱ)若,有三个线性无关解,求a,b的值及方程组的通解.
设极坐标系下的累次积分I=(rcosθ,rsinθ)rdθ,将I写成先对r后对θ的累次积分,则________.
已知曲线在直角坐标系中由参数方程给出:(I)证明x=tlnt(t∈[1,+∞))存在连续的反函数t=t(x)(x∈[0,+∞))且该方程确定连续函数y=y(x),x∈[0,+∞);(Ⅱ)求y(x)的单调区间与极值点;(Ⅲ)求y(x)的凹凸区间及拐点
随机试题
处理机操作步骤并行的典型例子是()
明末因抗清而牺牲的少年诗人是()
社会产品必须是一定时期内的()
若3阶矩阵A=的秩为2,则a=().
某刺绣厂女工李某因其绣工好,深受客户喜爱。许多爱刺绣的客户慕名前来向其定作绣品。某年,港商向其一次性订购10幅绣品,每幅1000元,言明1年后取货,并预付了5000元定金。李某因当年家中杂事太多,就把活儿分给本厂几名女工合干,言明到时货钱平分。1年后,货款
为行气消胀之要药,燥湿除满之佳品的是( )。
下列选项中,属于个人贷款定价的一般原则的有()。
【丝绸之路】江西师范大学2011年历史地理学复试真题;中国社科院2014年边疆史复试真题
简要分析科尔伯格的道德认知发展理论的主要方法——道德两难问题讨论法。
Youcanhave______paiddirectfromyouraccount.
最新回复
(
0
)