首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元齐次线性方程组Aχ=0的系数矩阵的秩r(A)=n-3,且α1,α2,α3为此方程组的三个线性无关的解,则下列向量组中可以作为Aχ=0的基础解系是( )
设n元齐次线性方程组Aχ=0的系数矩阵的秩r(A)=n-3,且α1,α2,α3为此方程组的三个线性无关的解,则下列向量组中可以作为Aχ=0的基础解系是( )
admin
2016-03-16
43
问题
设n元齐次线性方程组Aχ=0的系数矩阵的秩r(A)=n-3,且α
1
,α
2
,α
3
为此方程组的三个线性无关的解,则下列向量组中可以作为Aχ=0的基础解系是( )
选项
A、-α
1
,2α
2
,3α
3
+α
1
-α
2
B、α
1
+α
2
,α
2
-α
3
,α
3
+α
1
C、α
1
-2α
2
,3α
3
-α
1
,-3α
3
+2α
2
D、2α
1
+4α
2
,-2α
2
+α
3
,α
3
+α
1
答案
A
解析
因为r(A)=n-3,所以基础解系所含向量的个数为n-(n-3)=3;又由解的性质可知四组备选答案中任何一组的三个向量均为解向量,现在要验证的是哪组解线性无关.又因为选项A中
由于|C|=
=-6≠0,故r(-α
1
,2α
2
,3α
3
+α
1
-α
2
)=r(α
1
,α
2
,α
3
)=3.
故选项A中的三个解向量线性无关.应选A.
转载请注明原文地址:https://kaotiyun.com/show/OrbD777K
0
考研数学二
相关试题推荐
下列事项中,应当制发通知的有()。
下列选项中,属于法律关系客体的是()。
有4支队伍进行4项比赛,每项比赛的第一、第二、第三、第四名分别得到5、3、2、1分。每队的4项比赛得分之和算作总分,如果已知各队的总分不相同,并且A队获得了三项比赛的第一名,问总分最少的队伍最多得多少分?()
一位客人在自助餐厅就餐时,他准备在6种肉类中挑选3种,4种蔬菜中挑选2种,从3种点心中挑选2种。若不考虑食物的挑选次序,则他可以有多少种不同选择方法?
某区对用电的收费标准规定如下:每月每户用电不超过10度的部分,按每度0.45元收费;超过10度而不超过20度的部分,按每度0.80元收费;超过20度的部分,按每度1.50元收费。某月甲用户比乙用户多交电费7.10元,乙用户比丙用户多交3.75元,那么甲、乙
某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1一10中的正整数)。如果他要打破记录,第7次射击不能少于多少环?
设三阶矩阵A的特征值为λ1=-1,λ2=2,λ3=4,对应的特征向量为ξ1,ξ2,ξ3,令P=(-3ξ2,2ξ1,5ξ3),则P-1(A*+2E)P等于().
对函数f(χ)(4-t)ln(1+t)dt().
设A为三阶实数对称矩阵,且存在正交矩阵,使得QTAQ=,又令B=A2+2E,求矩阵B.
对三阶矩阵A的伴随矩阵A*先交换第一行与第三行,然后将第二列的一2倍加到第三列得-E,且|A|>0,则A等于().
随机试题
对于下列哪项情形的具体行政行为,人民法院可作出撤销判断。()
DNA连接酶催化的化学反应能够
关于尿素循环的叙述,下列哪项是错误的
老年人夜间安静睡眠时易出现脑血栓,原因是
进入20世纪后,资本主义法()。
下列关于资金时间价值的论述中,不正确的是()。
某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<p<1),则此人第四次射击恰好第二次命中目标的概率为()。
人的本质是()。
定义:①心境是一种比较持久的、微弱的、影响人的整个精神活动的情绪状态。②激情是一种强烈的、短暂的,然而是爆发式的情绪状态。③应激是在出乎意料的紧急情况下所引起的情绪状态。典型例证:(1)怒发冲冠,凭栏处潇潇
在经历了全球范围的股市暴跌的冲击以后,T国政府宣称,它所经历的这场股市暴跌的冲击,是由于最近国内一些企业过快的非国有化造成的。以下哪项,如果事实上是可操作的,最有利于评价T国政府的上述宣称?
最新回复
(
0
)