首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称正交矩阵,且1为A的r重特征根,则|3E-A|=______。
设A为n阶实对称正交矩阵,且1为A的r重特征根,则|3E-A|=______。
admin
2022-01-06
46
问题
设A为n阶实对称正交矩阵,且1为A的r重特征根,则|3E-A|=______。
选项
答案
2
2n-r
解析
由于A为n阶实对称正交矩阵,所以A可以相似对角化,且|A|=±1。
由A可以相似对角化可知,存在可逆矩阵P,使得
P
-1
AP=diag(1,1,…,1,-1,-1,…,-1),
其中1有r个,-1有n-r个。
所以
|3E-A|=|P(3E-P
-1
AP)P
-1
|=|P||3E-P
-1
AP||P
-1
|=|3E-P
-1
AP|,注意到3E-P
-1
AP是对角矩阵,对角线上有r个2,n-r个4,所以
|3E-A|=2
r
4
n-r
=2
2n-r
。
转载请注明原文地址:https://kaotiyun.com/show/Osf4777K
0
考研数学二
相关试题推荐
下列命题中,(1)如果矩阵AB=E,则A可逆且A一1=B.(2)如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E.(3)如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆.(4)如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆.正确的是(
A=E-αTα,B=E+2αTα,其中E为n阶单位矩阵,则AB等于
设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆;②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;(A一B恒可逆。上述命题中,正确的个数为()
设A,B分别为m阶和n阶可逆矩阵,则的逆矩阵为()
设α1,α2为开次线性万程组AX=0的基石出解糸,β1,β2为非开次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
设非齐次线性方程组Aχ=b有两个不同解,β1和β2其导出组的一个基础解系为α1,α2,c1,c2为任意常数,则方程组Aχ=b的通解为【】
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是()
随机试题
A.羊水肌酐值B.羊水淀粉酶值C.羊水胆红素类物质值D.羊水卵磷脂/鞘磷脂比值E.羊水中含脂肪细胞出现率推测胎儿肾脏成熟的指标
下列不符合进入设备内安全作业要求的是:()
按照费用构成要素划分建筑安装工程费用项目,施工机具使用费中的仪器仪表使用费通常是计算其()。
关于公募基金的合同生效,下列表述正确的是()。
水路运输成本中的保险费用是指航运企业为避免因自然灾害和意外事故等带来的巨大经济损失,以()为标的物进行投保所支付的费用。
下列关于存款人撤销基本存款账户的表述中,正确的有()。
一般资料:求助者,男性,33岁,已婚,公务员。案例介绍:求助者出生在军人家庭,但自幼随祖母在农村生活,上小学时回到城里的父母身边。父母对他事事严格要求,养成了他追求完美的性格特征。因带乡下口音,曾被同学笑话,对上学感到恐惧,觉得无助和自卑,但成绩一
20世纪50年代,_________兴起,同时信息论的思想为许多心理学家所接受,这些成果也影响和改变了教育心理学的内容。
意义或观念的最小单元是
Innovationsinlanguagearenevercompletelynew.Whenthewordsusedforfamiliarthingschange,orwordsfornewthingsenter
最新回复
(
0
)