首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置,证明: (Ⅰ)秩r(A)≤2; (Ⅱ)若α,β线性相关,则秩r(A)<2.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置,证明: (Ⅰ)秩r(A)≤2; (Ⅱ)若α,β线性相关,则秩r(A)<2.
admin
2020-03-05
34
问题
设α,β为3维列向量,矩阵A=αα
T
+ββ
T
,其中α
T
,β
T
分别是α,β的转置,证明:
(Ⅰ)秩r(A)≤2;
(Ⅱ)若α,β线性相关,则秩r(A)<2.
选项
答案
(Ⅰ)利用r(A+B)≤r(A)+r(B)和r(AB)≤min(r(A),r(B)),有 r(A)=r(αα
T
+ββ
T
)≤r(αα
T
)+r(ββ
T
)≤r(α)+r(β). 又α,β均为3维列向量,则r(α)≤1,r(β})≤1.故r(A)≤2. (Ⅱ)方法1°当α,β线性相关时,不妨设β=kα,则 r(A)=r(αα
T
+K
2
ββ
T
)=r[(1+k
2
)αα
T
]=r(αα
T
)≤r(α)≤1<2. 方法2°因为齐次方程组α
T
x=0有2个线性无关的解,设为η
1
,η
2
,那么 α
T
η
1
=0,α
T
η
2
=0. 若α,β线性相关,不妨设β=kα,那么 β
T
η
1
=(kα)
T
η
1
=kα
T
η
1
=0, β
T
η
2
=(kα)
T
η
2
=kα
T
η
2
=0. 于是 Aη
1
=(αα
T
+ββ
T
)η
1
=0, Aη
2
=(αα
T
+ββ
T
)η
2
=0, 即Ax=0至少有2个线性无关的解,因此n—r(A)≥2,即r(A)≤1<2.
解析
转载请注明原文地址:https://kaotiyun.com/show/OwS4777K
0
考研数学一
相关试题推荐
设5x12+x22+tx32+4x1x2一2x1x3一2x2x3为正定二次型,则t的取值范围是_______.
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是().
下列反常积分中发散的是
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是()①φ[f(x)]必有间断点。②[φ(x)]2必有间断点。③f[φ(x)]没有间断点。
在曲线的所有切线中,与平面x+2y+z=4平行的切线
设f(x)在点x=0的某邻域内连续,且,则在点x=0处f(x)()
设在上半平面D={(x,y)丨y>0}内,函数f(x,y)具有连续偏导数,且对任意的t>0都有f(tx,ty)=t-2f(x.y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设求f(x)的间断点并判定其类型.
设F(x)=g(x)φ(x),x=a是φ(x)的跳跃间断点,g’(a)存在,则g(a)=0,g’(a)=0是F(x)在x=a处可导的()
随机试题
当代,自然科学的发展日新月异,新的科研成果层出不穷。从根本上说,这是由
伴高血压冠心病的肝硬化消化道出血患者,不易使用下列哪项止血措施
生理变异最大的血脂指标是
(2011年)A系统对0.3μm颗粒的通过率是10%,B除尘系统的分割粒径0.5gm,则:
桥台可分为()等。
某企业为增值税一般纳税人,适用的增值税税率为17%,2008年10月发生下列经济业务:(1)对外销售B产品一批,成本60000元,价款80000元,增值税13600元,其中上月已预收货款20000元,其余款项尚未收到。(2)结转本月入库产品
在纸币制度下,影响汇率变动的因素不包括()。
根据企业所得税法律制度的规定,下列各项中,属于特许权使用费收入的是()。
设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求随机变量Z=X+Y的概率密度.
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
最新回复
(
0
)