首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组 求:(Ⅰ)方程组(1)与(2)的基础解系; (Ⅱ)(1)与(2)的公共解。
设四元齐次线性方程组 求:(Ⅰ)方程组(1)与(2)的基础解系; (Ⅱ)(1)与(2)的公共解。
admin
2017-01-14
81
问题
设四元齐次线性方程组
求:(Ⅰ)方程组(1)与(2)的基础解系;
(Ⅱ)(1)与(2)的公共解。
选项
答案
(Ⅰ)求方程组(1)的基础解系: 对方程组(1)的系数矩阵作初等行变换 [*] 分别取[*],其基础解系可取为 [*] 求方程(2)的基础解系: 对方程组(2)的系数矩阵作初等行变换 [*] 分别取[*],其基础解系可取为 [*] (Ⅱ)设x=(x
1
,x
2
,x
3
,x
4
)
T
为(1)与(2)的公共解,用两种方法求x的一般表达式: 将(1)的通解x=(c
1
,-c
1
,c
2
,-c
1
)
T
代入(2)得c
2
=-2c
1
,这表明(1)的解中所有形如(c
1
,-c
1
,-2c
2
,-c
1
)
T
的解也是(2)的解,从而是(1)与(2)的公共解。因此(1)与(2)的公共解为 x=k(-1,1,2,1)
T
,k∈R。
解析
转载请注明原文地址:https://kaotiyun.com/show/PDu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 D
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
设A是n(n≥3)阶矩阵,满足A3=O,则下列方程组中有惟一零解的是().
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)单调减少;且f(1)=f’(1)=1,则
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时.证明丨A丨≠0.
设函数f(x)在(-∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d),记证明曲线积分I与路径无关;
由结论可知,若令φ(x)=xf(x),则φˊ(x)=f(x)+xfˊ(x).因此,只需证明φ(x)在[0,1]内某一区间上满足罗尔定理的条件.令φ(x)=xf(x),由积分中值定理可知,存在η∈(0,1/2)使[*]
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是α1=(﹣1,﹣1,1)T,α2=(1,﹣2,﹣1)T.(I)求A的属于特征值3的特征向量;(Ⅱ)求矩阵A.
设幂级数的收敛半径分别为,则幂级数的收敛半径为().
随机试题
对于粉尘环境下的作业人员,每日增加150mg维生素_______的供给量可提高机体免疫力。
板蓝根颗粒功能是
A.疫苗B.放射性药品C.医疗机构制剂D.中药饮片E.中成药由国家药品监督管理部门负责GMP认证的是
【案例三】背景资料:某施工企业中标承建了一座日处理污水能为15万吨污水处理厂工程,为防止初沉池、二沉池、曝气池等薄壁钢筋混凝土排水构筑物产生裂缝,施工时采取了如下措施:(1)加大水泥用量,增加混凝土的和易性。(2)增
20×4年2月1日,甲公司以增发1000万股本公司普通股股票和一台大型设备为对价,取得乙公司25%股权。其中,所发行普通股面值为每股1元,公允价值为每股10元。为增发股份,甲公司向证券承销机构等支付佣金和手续费400万元。用作对价的设备账面价值为1000万
3G业务发展之后手机上网用户数快速增加,这主要是因为3G业务提供了()。
唐山记录地震历史的景观有()。
甲、乙、丙三个部门植树,其中68棵树不是甲部门种的,52棵树不是乙部门种的,且甲、乙两个部门一共种了60棵树。那么,丙部门种了多少棵树?
WildelephantsroamacrossthecrowdedplainsofIndia;forestedriverbankswindthroughcattleranchesinBrazil;aribbonof
以下关于城域网建设的描述中,不正确的是()。
最新回复
(
0
)