某企业为生产甲、乙两种型号的产品投入的固定成本为10000(万元),设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且这两种产品的边际成本分别为(万元/件)与6+y(万元/件). (1)求生产甲、乙两种产品的总成本函数C(x,y)(万元); (2

admin2016-06-27  56

问题 某企业为生产甲、乙两种型号的产品投入的固定成本为10000(万元),设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且这两种产品的边际成本分别为(万元/件)与6+y(万元/件).
(1)求生产甲、乙两种产品的总成本函数C(x,y)(万元);
(2)当总产量为50件时,甲、乙两种产品的产量各为多少时可使总成本最小,求最小成本;
(3)求总产量为50件且总成本最小时甲产品的边际成本,并解释其经济意义.

选项

答案 [*] 再对y求导,且有已知得, Cy’(x,y)=φ’(y)=6+y, [*] 因为C(0,0)=10000,所以C=10000,于是 [*] (2)若x+y=50,则y=50一x(0≤x≤50),代入到成本函数得 [*] 所以,令[*]得x=24,y=26.因此总成本最小为C(24,26)=11118. (3)总产量为50件且总成本最小时,甲产品的边际成本为Cx’(24,26)=32,即在要求总产量为50件时,在甲产品为24件时,改变一个单位的产量,成本会发生32万元的改变.

解析
转载请注明原文地址:https://kaotiyun.com/show/PFT4777K
0

相关试题推荐
最新回复(0)