首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次方程组为其中ai≠0. (1)讨论a1,a2,…,an和b满足何种关系时方程组有非零解; (2)在方程组有非零解时,写出一个基础解系.
已知齐次方程组为其中ai≠0. (1)讨论a1,a2,…,an和b满足何种关系时方程组有非零解; (2)在方程组有非零解时,写出一个基础解系.
admin
2016-10-21
62
问题
已知齐次方程组为
其中
a
i
≠0.
(1)讨论a
1
,a
2
,…,a
n
和b满足何种关系时方程组有非零解;
(2)在方程组有非零解时,写出一个基础解系.
选项
答案
(1)用矩阵消元法.设系数矩阵为A,A第1至(n-1)行各减去第n行: [*] 如果b=0,则r(A)=1,此时有非零解. 当b≠0时,继续对B作初等行变换:1至n-1行都除以b,再把第i行的-a
i
倍加到第n行上(1≤i≤n-1), [*] 则当b=-[*]a
i
时,r(A)=n-1,此时也有非零解. 如果b≠0且b≠-[*]a
i
,则r(A)=n,此时只有零解. (2)在b=0时求AX=0的基础解系:此时AX=0与方程a
1
χ
1
+a
2
χ
2
+a
3
χ
3
+…+a
n
χ
n
=0,同解.由于[*]a
i
≠0,a
1
,a
2
,…,a
n
不全为0. 不妨设a
n
≠0,规定 η
1
=(a
n
,0,…,0,-a
1
)
T
, η
2
=(0,a
n
,0,…,-a
2
)
T
,…,η
n-1
=(0,…,0,a
n
,-a
n-1
)
T
, 则η
1
,η
2
,…,η
n-1
是n-1个线性无关的解,构成AX=0的基础解系. 在b=-[*]a
i
时, C=[*] 则AX=0与CX=0同解,向量(1,1,…,1)
T
构成基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/PJt4777K
0
考研数学二
相关试题推荐
0
取ε0=1,根据极限定义,存在N>0,当n>N时,有|an-A|<1,所以|an|≤|A|+1.取M=max{|a1|,|a2|,…,|an|,|A|+1},则对一切的n,有|an|≤M.
[*]
设,其中a,b为常数,则().
设f(x)在x=2处连续,且,则曲线y=f(x)在点(2,f(2))处的切线方程为________.
设生产函数为Q=ALαKβ,其中Q是产出量,L是劳动投入量,K是资本投入量,而A,α,β均为大于零的参数,则当Q=1时,K关于L的弹性为________。
若连续函数f(x)满足关系式f(x)=∫02πdt+ln2,则f(x)=________。
已知函数若当x→0时,f(x)-a与xk同阶无穷小,求k。
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设函数f(x)在x=1的某邻域内连续,且有若又设f’’(1)存存,求f’’(1).
随机试题
下列对复制和转录异同点的比较中正确的是
胰腺疾病与胆道疾病互相关系的解剖基础是
某女,24岁。患功能性子宫出血多年。就诊时面色苍白,倦怠无力,头晕目眩,少气懒言,心悸失眠,纳差,舌质淡胖。苔薄,脉细弱。血常规检查血红蛋白102g/L,血清铁浓度常为8.1μmol/L,骨髓铁染色显示骨髓小粒可染铁消失,铁粒幼红细胞12%。最可能的诊断
建筑工程管理方法的特点是()。
施工质量控制是为了实现施工质量目标而进行的()的系统过程。
证券投资基金的价格主要受()的影响。
中小学生营养午餐应遵循的原则()。
违约方依约向守约方支付违约金后,已支付定金的守约方还有权要求违约方双倍返还定金。 ( )
设,则()
(2009年上半年)小王正在负责管理一个产品开发项目。开始时产品被定义为“最先进的个人数码产品”,后来被描述为“先进个人通信工具”。在市场人员的努力下该产品与某市交通局签订了采购意向书,随后与用户、市场人员和研发工程师进行了充分的讨论后,被描述为“成本在1
最新回复
(
0
)