首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
构造齐次方程组,使得η1=(1,1,0,一1)T,η2=(0,2,1,1)T构成它的基础解系.
构造齐次方程组,使得η1=(1,1,0,一1)T,η2=(0,2,1,1)T构成它的基础解系.
admin
2017-10-21
28
问题
构造齐次方程组,使得η
1
=(1,1,0,一1)
T
,η
2
=(0,2,1,1)
T
构成它的基础解系.
选项
答案
所求AX=0要满足:4维向量η是AX=0的解[*]η可用η
1
,η
2
线性表示. 设η=(c
1
,c
2
,c
3
,c
4
)
T
, [*] 于是η可用η
1
,η
2
线性表示[*]c
2
一c
1
—2c
3
=0且c
4
+c
1
—c
3
=0[*]η是齐次方程组 [*] 的解.这个齐次方程组满足要求.
解析
转载请注明原文地址:https://kaotiyun.com/show/PdH4777K
0
考研数学三
相关试题推荐
证明:
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明存在c∈(0,1).使得在区间[0,f]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且,证明(1)中的
设A为可逆的实对称矩阵,则二次型XTAN与XTA—1X().
设为A*的特征向量,求A*的特征值λ及a,b,c和A对应的特征值μ.
设A为n阶非零矩阵,且存在自然数k,使得Ak=0.证明:A不可以对角化.
判断级数的敛散性.
设(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
,求极大线性无关组,并把其余向量用极大线性无关组线性表出.
设方程组有解,则α1,α2,α3,α4满足的条件是_________.
设A是n阶方阵,2,4,…,2n是A的n个特征值,E是n阶单位阵.计算行列式|A一3E|的值.
随机试题
男性,45岁,因外伤性肠破裂行部分小肠切除吻合术,术后5天出现低热、下腹部坠胀、大便次数增多伴里急后重。直肠指诊于直肠前壁触及有压痛的肿块伴波动感,白细胞计数20×109/L,中性粒细胞90%。此时的治疗应选择
参与呼吸的主要肌是
下列有关项目资本金制度的表述中,正确的是()。
《建设工程施工合同(示范文本)》规定,因发包人的原因影响了承包人不能按照协议书约定的日期开工时,发包人应当( )。
A公司下列经济业务中所涉及的借款费用,不应予以资本化的是()。
三个学生共解出30道数学题,每人都解出了其中的12道,且每道题都有人解出。只有一人解出的题叫做难题,只有两个人解出的题叫做中等题,三人都解出的题叫做容易题。在这30道题中,难题、中等题、容易题均有,且题数各不相等,则难题的题数是()。
下列对犯罪未遂形态的认定,不正确的是()。
A、条件(1)充分,但条件(2)不充分。B、条件(2)充分,但条件(1)不充分。C、条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分。D、条件(1)充分,条件(2)也充分。E、条件(1)和(2)单独都不充分,条件(1)和条件(2
全国人大各专门委员会的主要职责是什么?
Doesthelanguagewespeakdeterminehowhealthyandrichwewillbe?NewresearchbyKeithChenofYaleBusinessSchoolsuggest
最新回复
(
0
)