首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 在下列微分方程中以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是( ).
[2008年] 在下列微分方程中以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是( ).
admin
2019-05-10
61
问题
[2008年] 在下列微分方程中以y=C
1
e
x
+C
2
cos2x+C
3
sin2x(C
1
,C
2
,C
3
为任意常数)为通解的是( ).
选项
A、y"′+y"一4y′一4y=0
B、y"′+y"+4y′+4y=0
C、y"′一y"一4y′+4y=0
D、y"′一y"+4y′一4y=0
答案
D
解析
已知微分方程的通解,应根据通解的形式求出特征值,写出特征方程,最后写出待求的微分方程.
由其通解y=C
1
e
x
+C
2
cos2x+C
3
sin2x可知,其特征根为λ
1
=1,λ
2,3
=0±2i,故其特征方程为
(λ-1)(λ-2i)(λ+2i)=(λ-1)(λ
2
+4)=λ
3
-λ
2
+4λ-4=0,
故所求的微分方程为y"′一y"+4y′一4y=0.仅(D)入选.
转载请注明原文地址:https://kaotiyun.com/show/QNV4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η(0,1),使得f′(ξ)+f′(η)=0.
矩阵的非零特征值是a3=_______.
设A为,n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设α1,…,αm,β为m+1个n维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
设y=y(χ)由χ2y2+y=1(y>0)确定,求函数y=y(χ)的极值.
设φ1(χ),φ2(χ)为一阶非齐次线性微分方程y′+P(χ)y=Q(χ)的两个线性无关的特解,则该方程的通解为().
求微分方程χy=χ2+y2满足初始条件y(e)=2e的特解.
设f(χ)连续可导,f(0)=0,f′(0)≠0,F(χ)=∫0χ(χ2-t2)f(t)dt,且当χ→0时,F′(χ)与χk为同阶无穷小,求k.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
随机试题
哪些法律行为必须经过公证才发生法律效力?
胆囊三角内有哪些重要结构穿行()
给定资料:1.今年3月17日,习近平同志在全国人大闭幕会上的讲话中9次提到“中国梦”,“中国梦”迅速成为一个全国上下热议的话题.并受到世人瞩目。党中央提出的两个“百年目标”:一是在建党一百年时全面建成小康社会,一是在建国一百年时建成富强
医务社会工作者倡导工作的直接内容包括哪些?( )
铁路线路安全是铁路运输安全的基础,由于铁路穿越田野、山区、林地、草原,跨越河流、沟壑,线路漫长,影响铁路线路安全以及列车在线路运行区间安全的因素,不仅有各种治安问题,也有自然灾害。比如在没有安装防护网的线路区段,火车撞轧人员、畜牧的铁路交通事故时有
下列哪一项是与计算机、半导体和原子能齐名的20世纪四项重大发明之一( )。
クラスの子が旅行のお土産でお菓子を買って来て________から、給食の時間に先生が配ってみんなで食べたんだよ。
Thereisonlyonedifferencebetweenanoldmanandayoungone:theyoungonehasagloriousfuturebeforehimandtheoldone
Inmyneighborhoodintheearly1980s,wespentthesummerplayingkickball.Ourfrontlawnswereaconstant.Wetooktheirsoft
InBritainarrangementforinvitingandentertainingguestsataweddingareusuallytheresponsibilityofthebride’sfamily.I
最新回复
(
0
)