首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可导,证明:对于,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
设f(x)在(a,b)内可导,证明:对于,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
admin
2017-10-19
66
问题
设f(x)在(a,b)内可导,证明:对于
,x
0
∈(a,b)且x≠x
0
时,f’(x)在(a,b)单调减少的充要条件是
f(x
0
)+f’(x
0
)(x-x
0
)>f(x). (*)
选项
答案
充分性:设(*)成立,[*],x
2
∈(a,b)且x
1
<x
2
,则 f(x
2
)<f(x
1
)+f’(x
1
)(x
2
-x
1
),f(x
1
)<f(x
2
)+f’(x
2
)(x
1
-x
2
). 两式相加可得[f’(x
1
)-f’(x
2
)](x
2
-x
1
)>0,于是由x
1
<x
2
知f’(x
1
)>f’(x
2
),即f’(x)在(a,b)单调减少. 必要性:设f’(x)在(a,b)单调减少.对于[*],x
0
∈(a,b)且x≠x
0
,由微分中值定理得 f(x)-[f(x
0
)+f’(x
0
)(x-x
0
)]=[f’(ξ)-f’(x
0
)](x-x
0
)<0, 其中ξ在x与x
0
之间,即(*)成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/R4H4777K
0
考研数学三
相关试题推荐
设随机变量X~F(n,n),记α=P{X≥1},β=P{X<1},则在下列关于α与β关系式①α+β=1,②α=β,③α<β,④α>β中正确的是
设二维连续型随机变量(X,Y)服从区域D上的均匀分布,其中D={(x,y)|0≤y≤x≤2一y}.试求:(I)X+Y的概率密度;(Ⅱ)X的边缘概率密度;(Ⅲ)P{Y≤0.2|X=1.5}.
设f(x)在x=0的某邻域内连续,,则f(x)在x=0处
设X1,X2,X3,X4,X5为来自正态总体X~N(0,4)的简单随机样本,Y=a(X1一2X2)2+b(3X3一4X4)2+cX5,且Y~χ(n),则a=__________,b=__________,c=__________,n=__________。
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
证明:对任意的x,y∈R且x≠y,有.
证明:当0<x<1时,(1+x)ln2(1+x)<x2.
判断级数的敛散性.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=记X一(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
随机试题
A.直方图B.直条图C.圆图D.普通线图E.统计地图观察甲型病毒性肝炎患者的年龄分布,宜选择的图形为
教师为了帮助大班幼儿了解春天的季节特征,同时在其中渗透数学教育,专门制作了一套“春天”的拼图(见图1),拼图底板是若干道10以内计算题,每一小块图形的正面是春天景色的一部分,背面是计算题的得数(见图2),教师希望幼儿根据计算题与得数的匹配找到拼图的相应位置
药物信息活动涉及的领域
霍乱的发病机制中,起主要作用的是
具有苯甲胺结构的祛痰药是
能判断氧化还原反应能否进行的是显著影响氧化磷酸化进行的是
(2007年)在城市规划区内的建筑工程,申领施工许可证时,下列条件中哪一项是不必要的?()
规定了国家领导人员的任期限制,废除终身制的宪法是()。
运算器主要功能为______与______。
FlirtwithSuicideThelifeofDavidWoodswasthestuffofanAustralianboy’sdream.Heplayedprofessionalrugbyleague
最新回复
(
0
)