首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元齐次线性方程组Ax=0的系数矩阵的秩r(A)=n-3,且α1,α2,α3为此方程组的三个线性无关的解,则下列向量组中可以作为Ax=0的基础解系的是( )
设n元齐次线性方程组Ax=0的系数矩阵的秩r(A)=n-3,且α1,α2,α3为此方程组的三个线性无关的解,则下列向量组中可以作为Ax=0的基础解系的是( )
admin
2016-04-29
71
问题
设n元齐次线性方程组Ax=0的系数矩阵的秩r(A)=n-3,且α
1
,α
2
,α
3
为此方程组的三个线性无关的解,则下列向量组中可以作为Ax=0的基础解系的是( )
选项
A、-α
1
,2α
2
,3α
3
+α
1
-α
2
B、α
1
+α
2
,α
2
-α
3
,α
3
+α
1
C、α
1
-2α
2
,3α
3
-α
1
,-3α
3
+2α
2
D、2α
1
+4α
2
,-2α
2
+α
3
,α
3
+α
1
答案
A
解析
因为r(A)=n-3,所以基础解系所含向量的个数为n-(n-3)=3;又由解的
性质可知,四组备选答案中任何一组的三个向量均为解向量,现在要验证的是哪组解向量线性无关,又因为选项(A)中
转载请注明原文地址:https://kaotiyun.com/show/R9T4777K
0
考研数学三
相关试题推荐
中国民族资产阶级登上政治舞台的第一次表演是()。
材料1 位于长江之滨的江苏张家港,是我国犯罪率最低的城市之一。与之紧密相关的是,张家港还是首批获评全国文明城市的县级市。早在20年前,这里就以精神文明建设成就享誉全国。长期的文明浸润,涵养了这座城市的法治文化,孕育了张家港人的法治精神。 材料2
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
一辆飞机场的交通车载有25名乘客,途经9个站,每位乘客都等可能在9个站中任意一站下车,交通车只在有乘客下车时才停车,求下列各事件的概率:(1)交通车在第i站停车;(2)交通车在第i站和第j站至少有一站停车;(3)交通车在第i站
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
掷两枚均匀的骰子,已知它们出现的点数各不相同,求其中有一个点数为4的概率.
求下列三重积分
求下列曲线所围成的图形的面积:(1)ρ=asin3φ;(2)ρ2=a2cos2φ.
设函数y=f(x)具有三阶连续导数,其图形如图28所示,那么,以下4个积分中,值小于零的积分是().
随机试题
下列哪类药物对逆转左室肥厚、改善舒张功能无效
国家鼓励下列人员率先献血
A.散点图B.圆图C.直条图D.直方图E.线图可用于描述两连续型变量之间相关关系的统计图是
项目组内部的复核人员应当考虑的内容有()。
()距今已有1500多年的历史,是东北地区年代最早的佛塔。
一般资料:求助者,女性,42岁,已婚,大学文化程度,某公司业务经理。案例介绍:求助者父母的家在郊区,自己结婚后在市内购房生活,平时与父母、哥哥、姐姐的关系很融洽。因城市改造,求助者父母的房子被拆迁了,得到了两套房子和大笔拆迁款。求助者的父母自己住
交换机和路由器都可以进行网段的分割,但如果在局域网中,用_______可以取得更好的效果。
下面不属于软件需求分析阶段主要工作的是
IstillrememberIfellinlovewithfromaveryyoungage,becauseIthoughtitwassuch,a(n)【C1】______language.Fullofstron
Amongherfellowastronomers,VeraRubinisknownasanexpertobserverofthenightsky,oneofthebest.Herreputationderive
最新回复
(
0
)