首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)求矩阵A的特征值; (2)判断矩阵A可否对角化.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)求矩阵A的特征值; (2)判断矩阵A可否对角化.
admin
2016-10-13
31
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三个三维线性无关的列向量,且满足Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
(1)求矩阵A的特征值;
(2)判断矩阵A可否对角化.
选项
答案
(1)因为α
1
,α
2
,α
3
线性无关,所以α
1
+α
2
+α
3
≠0, 由A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
),得A的一个特征值为λ
1
=2; 又由A(α
1
—α
2
)=一(α
1
—α
2
),A(α
2
—α
3
)=一(α
2
—α
3
),得A的另—个特征值为λ
2
=一1.因为α
1
,α
2
,α
3
线性无关,所以α
1
—α
2
与α
2
—α
3
也线性无关,所以λ
2
=一1.为矩阵A的二重 特征值,即A的特征值为2,一1,一1. (2)因为
1
—α
2
,α
2
—α
3
为属于二重特征值一1的两个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/REu4777K
0
考研数学一
相关试题推荐
设函数f(x)在(0,+∞)上可导,f(0)=0,且存在原函数,其反函数为g(x),若求f(x)的表达式;
[*]
-1
(1)设F(x)=f(-x),且f(x)有n阶导数,求F(n)(x);(2)设f(x)=xe-x,求f(n)(x).
设一矩形面积为A,试将周长S表示为宽x的函数,并求其定义域。
计算二重积分=_________.
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.若收到字符为ABCA,问被传送字符为AAAA的概率是多大?
(I)依题意画图(如右图).由y=x2得yˊ=2x,任给a(0<a≤1),抛物线y=x2在点(a,a2)处的切线方程为y-a2=2a(x-a),该切线与x轴的交点为(a/2,0),[*]
设四维向量组a1=(1+a,1,1,1)T,a2=(2,2+a,2,2)T,a3=(3,3,3+a,3)T,a4=(4,4,4,4+a)T,问a为何值时,a1,a2,a3,a4线性相关?当a1,a2,a3,a4线性相关时,求其一个极大线性无关组,并将其余向
设xOy平面第一象限中有曲线F:y=),(x),过点A(0,),y’(x)>0.又M(x,y)为F上任意一点,满足:弧段的长度与点M处F的切线在x轴上的截距之差为.导出y=y(x)满足的积分、微分方程和初始条件;
随机试题
Thewitnesses________bythepolicejustnowgaveverydifferentdescriptionsofthefight.
个体对待组织变革的阻力,主要表现在()
既能清热利湿,又能止痒的药物是
基础设施费指企业在项目开发建设过程中所发生的各项基础设施费用支出。包括()。
下列不属于按划拨形式获得土地建设项目划分的是()。
关于同业拆借市场特点的表述,不正确的是()。
【2013年济宁市市属/2012年临沂市】李阳这次考试成绩非常差,老师找他谈话时,他分析原因是因为近期喜欢上班里的一个女生,上课开小差,所以学习不够努力。这种原因归因属于()。
注意事项1.申论考试是对应考者阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力和贯彻执行能力的测试。2.作答参考时限:阅读材料30分钟,作答90分钟。3.仔细阅读给定资料,按照后面提出的“作答要求”依次作答。
明星丁某在赈灾晚会上公开承诺给灾区捐款80万元,但事后只捐30万元,对余款50万元的捐赠,下列说法错误的有()。
下列对于关系的叙述中,不正确的是()。
最新回复
(
0
)