首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A,B满足AB=aA+bB.其中ab≠0,证明 (1)A—bE和B—aE都可逆. (2)AB=BA.
设n阶矩阵A,B满足AB=aA+bB.其中ab≠0,证明 (1)A—bE和B—aE都可逆. (2)AB=BA.
admin
2017-10-21
26
问题
设n阶矩阵A,B满足AB=aA+bB.其中ab≠0,证明
(1)A—bE和B—aE都可逆.
(2)AB=BA.
选项
答案
(1)A一bE和B一aE都可逆[*](A—bE)(B一aE)可逆.直接计算(A—bE)(B一aE). (A—bE)(B—aE)=AB—aA—bB+abE=abE. 因为ab≠0,得(A—bE),(B—aE)可逆. (2)利用等式(A一bE)(B—aE)=abE,两边除以ab,得 [*] 再两边乘ab,得(B—aE)(A一bE)=abE,即 BA—aA一bB+abE=abE. BA=aA+bB=AB.
解析
转载请注明原文地址:https://kaotiyun.com/show/RKH4777K
0
考研数学三
相关试题推荐
判断级数的敛散性.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
设A为n阶矩阵,A的各行元素之和为0且r(A)=n一1,则方程组AX=0的通解为
设A是m×n矩阵,下列命题正确的是().
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.证明:向量组β,β+α1,β+α2,…,β+αt,线性无关.
已知线性方程组及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解址()
设求An。
随机试题
已知某地区国民可支配收入为2000亿元,居民消费为1100亿元,社会消费为400亿元,则该地区总消费率为()
在Excel2010中,下列关于高级筛选的描述中,错误的是______________。
腭中缝裂开自鼻额缝向两侧横过鼻梁、眶内壁、眶底、颧上颌缝,沿上颌骨侧壁达翼突
截瘫病人足用支架的目的是
关于抵押物的转让,下列说法不正确的是()。
下列项目中不属于有价证券的是()。
这些私自印制已注册商标以及______、______、______假冒商品的行为均已构成犯罪。
A、 B、 C、 D、 A
Lookatthelistbelow.ItshowsthecontentsofaWeb.Forquestions6-10,decidewhichpart(A-H)eachpersonshouldvisit.F
Thegoods()whenwearrivedattheairport.
最新回复
(
0
)