首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实矩阵,AT 是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):AT AX=0,必有
设A为n阶实矩阵,AT 是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):AT AX=0,必有
admin
2012-03-22
58
问题
设A为n阶实矩阵,A
T
是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):A
T
AX=0,必有
选项
A、(Ⅱ)的解是(I)的解,(I)的解也是(Ⅱ)的解.
B、(Ⅱ)的解是(I)的解,但(I)的解不是(Ⅱ)的解.
C、(I)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(I)的解.
D、(I)的解是(Ⅱ)的解,但(Ⅱ)的解不是(I)的解.
答案
A
解析
转载请注明原文地址:https://kaotiyun.com/show/RNF4777K
0
考研数学三
相关试题推荐
马克思主义真理精神表现为实践的精神。实践的观点、生活的观点是马克思主义认识论的基本观点,实践性是马克思主义理论区别于其他理论的显著特征。真理性认识的基础和动力是实践,检验真理的标准归根到底也是实践。实践是检验真理的唯一标准,这是因为()
实践作为检验真理的标准,既是确定的又是不确定的,其不确定性是因为()
社会主义社会的基本矛盾是生产关系和生产力之间的矛盾、上层建筑和经济基础之间的矛盾,是非对抗性的矛盾。解决这一矛盾的途径是()
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
设A,B是同阶正定矩阵,则下列命题错误的是().
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设对于半空间x>0内的任意光滑的定向封闭曲面∑,恒有其中f(x)在(0,+∞)内具有一阶连续导数.(1)求出f(x)满足的微分方程;(2)若f(1)=e2,求f(x).
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
设线性无关的函数y1,y2与y3均为二阶非齐次线性方程的解,C1与C2是任意常数.则该非齐次线性方程的通解是().
随机试题
已知下列函数定义:fun(int*b,intc,intn,intdata){intk;for(k=0;k
生活饮用水采样后如不能立即检验,其保存温度和时间为
注射破伤风类毒素的目的是
朱砂安神丸组成中含有的药物是
关于医嘱种类的解释,下列哪项不对
有A、B两项连续工作,其最早开始时间分别为4天和10天,持续时间分别为4天和5天,则A工作的自由时差是()。
根据企业所得税法律制度的规定,下列关于企业清算的所得税处理的表述中,正确的有()。
三心:两意
依我国《民法通则》,关于委托书授权不明的民事责任,正确的选项是()。
【S1】【S5】
最新回复
(
0
)