首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2. 求A的特征值.
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2. 求A的特征值.
admin
2017-10-21
31
问题
设A是3阶实对称矩阵,满足A
2
+2A=0,并且r(A)=2.
求A的特征值.
选项
答案
因为A是实对称矩阵,所以A的特征值都是实数. 假设λ是A的一个特征值,则λ
2
+2λ是A
2
+2A的特征值.而A
2
+2A=0,因此λ
2
+2λ=0,故λ=0或一2.又因为r(A一0E)=r(A)=2,特征值0的重数为3一r(A一0E)=1,所以一2是A的二重特征值.A的特征值为0,一2,一2.
解析
转载请注明原文地址:https://kaotiyun.com/show/ROH4777K
0
考研数学三
相关试题推荐
二次型f(x1,x2,x3)=x12+ax22+x32—4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
设,则α1,α2,α3经过施密特正交规范化后的向量组为
设A=有三个线性无关的特征向量,求x,y满足的条件.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
设A=(α1,α2,α3,α4,α4),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
对二元函数z=f(x,y),下列结论正确的是().
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
已知二次型f(x1,x2,x3)=422一3x32+4x1x2—4x1x3+8x2x3.写出二次型f的矩阵表达式;
随机试题
导游员接送半自助散客与接送旅游团客人的不同之处主要有()。
试述市场撇脂定价策略的概念及其优缺点。
龚鑫向人民法院提起诉讼,主张靖宙与其签订了提供100吨蜜橘的合同,但履行期满尚未履行,要求靖宙履行合同义务并支付违约金。其提交了与靖宙签订的一份100吨蜜橘的供销合同作为证据。在诉讼中,靖宙主张其与龚鑫之间的购销合同已经双方同意撤销,并提交了其与龚鑫签订的
施工单位应当在施工现场入口处、施工起重机械、临时用电设施、脚手架、出入通道口、楼梯口、电梯井口、孔洞口、桥梁口、隧道口、基坑边沿、爆破物及有害危险气体和液体存放处等危险部位,设置明显的安全警示标志。
骨架隔墙的安装,在门窗、特殊节点处应( )。
下列钢结构连接方式能直接承受动力荷载的是()。
目前实行集中统一监管体制的国家主要有()。
甲房地产公司2010——2014年发生业务如下:(1)甲房地产公司于2010年1月1日将一幢商品房对外出租并采用公允价值模式计量,租期为3年,每年12月31日收取租金200万元,出租时,该幢商品房的成本为5000万元,公允价值为6000万元。
里约奥运会的筹备给里约带来了一些较好的影响,有两个变化值得关注:一是关于非保护地带的居住面积(4131公顷)和服务业使用面积(236公顷)的增长替代了工业区的使用面积的增长(103公顷);二是大都市的贫民窟数量减少了18%,而在2004—2009年,贫民窟
TheForbiddenAppleNewYorkusedtobethecitythatneversleeps.Thesesdays,it’sthecitythatneversmokes,drinksor
最新回复
(
0
)