首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是( )
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是( )
admin
2017-09-07
24
问题
设n维列向量组α
1
,α
2
,…,α
m
(m<n)线性无关,则n维列向量组β
1
,β
2
,…,β
m
线性无关的充分必要条件是( )
选项
A、向量组α
1
,α
2
,…,α
m
可以由β
1
,β
2
,…,β
m
线性表示.
B、向量组β
1
,β
2
,…,β
m
可以由α
1
,α
2
,…,α
m
线性表示.
C、向量组α
1
,α
2
,…,α
m
与β
1
,β
2
,…,β
m
等价.
D、矩阵A=(α
1
,α
2
,…,α
m
)与矩阵B=(β
1
,β
2
,…,β
m
)等价.
答案
D
解析
设α
1
=(1,0,0,0)
T
,α
2
=(0,1,0,0)
T
;β
1
=(0,0,1,0)
T
,β
2
=(0,0,0,1)
T
各自都线性无关,但它们之间不能相互线性表示,故排除A、B;既然不能相互线性表示,则不可能有等价关系,故排除C.D选项:因为n维向量组α
1
,α
2
,…,α
m
无关,则R(α
1
,α
2
,…,α
m
)=m,同理,由n维向量组β
1
,β
2
,…,β
m
无关得R(β
1
,β
2
,…,β
m
)=m,故设A=(α
1
,α
2
,…,α
m
),B=(β
1
,β
2
,…,β
m
),A与B同型,且R(A)=R(B),由矩阵等价的充要条件得A与B等价.
转载请注明原文地址:https://kaotiyun.com/show/RRr4777K
0
考研数学一
相关试题推荐
设u(x,Y)在点M0(x0,y0)处取极小值,并且均存在,则
设A为n阶矩阵,对于齐次线性方程(Ⅰ)Anx=0和(Ⅱ)An+1x=0,则必有
设f(x,y,z)是连续函数,∑是平面x—y+z一1=0在第四卦限部分的上侧,计算
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
设随机变量X的数学期望和方差分别为E(X)=μ,D(X)=σ2,用切比雪夫不等式估计P{|X一μ|<3σ).
某厂家生产的一种产品同时在两个市场上销售,售价分别为p1,p2,销售量分别为q1,q2,需求函数分别为q1=24—0.2p1,q2=10—0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格,能使其获得总利润最大?最大利
设随机变量X取非负整数值,P{X=n)=an(n≥1),且EX=1,则a的值为()
已知对于n阶方阵A,存在自然数忌,使得Ak=0.试证明:矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
设A为n×m实矩阵,且秩r(A)=n,考虑以下命题:①AAT的行列式|AAT|≠0;②AAT必与n阶单位矩阵等价;③AAT必与一个对角矩阵相似;④AAT必与n阶单位矩阵合同,其中正确的命题数为
随机试题
死刑复核程序是我国刑事诉讼中适用于死刑判决的一种程序,关于这种程序,下述各项中说法正确的是:
根据标准的审批和发布的权限及适用范围,下列哪些是正规的标准()。
A.IgG抗体B.IgM抗体C.两者均可D.两者均否疾病早期产生的抗体
有关新生儿缺氧缺血性脑病,不正确的是
根据记忆的内容,记忆可分为四种,以下哪项不是?()
背景某矿山项目建井工程已完成招标工作,施工单位为保证施工项目的顺利进行,认真地进行了进度控制计划的编制工作。主要包括编制矿井施工组织设计;确定保证总工期目标不被突破的对策措施;确定施工方案;工程进度的动态管理计划;施工总进度计划;工程进度的检查计划;施工
()是一种主要用来测评被测评者人际关系处理能力的情景模拟测试法。
程序测试的目的是()。
Supermarketshoppershaveneverbeenmorespoiltforchoice.Butjustwhenwethoughttraditionalsystemsofselectivefanningh
Researchersallovertheworldhavebeenseekingfordetermininghowearlyinfancyconceptualthinkingispossible.
最新回复
(
0
)