设f(x)在[0,1]可导,0<f’(x)<1,0<f(x)<1,且F(x)=1/2[x+f(x)]。 证明:方程F(x)=x在(0,1)内有唯一实根ξ

admin2021-12-14  32

问题 设f(x)在[0,1]可导,0<f’(x)<1,0<f(x)<1,且F(x)=1/2[x+f(x)]。
证明:方程F(x)=x在(0,1)内有唯一实根ξ

选项

答案令G(x)=F(x)-x=1/2[f(x)-x],则G(0)>0,G(1)<0,故由零点定理,可知存在一点ξ∈(0,1),使得G(ξ)=F(ξ)-ξ=0,即F(ξ)=ξ,又由G’(x)=1/2[f’(x)-1]<0,知G(x)在[0,1]上严格单凋减少,故方程F(x)=x在(0,1)内有唯一实根ξ。

解析
转载请注明原文地址:https://kaotiyun.com/show/Rzf4777K
0

最新回复(0)