首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+t α4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的一个基础解系。
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+t α4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的一个基础解系。
admin
2014-06-15
47
问题
已知α
1
,α
2
,α
3
,α
4
是线性方程组Ax=0的一个基础解系,若β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
=α
3
+t α
4
,β
4
=α
4
+tα
1
,讨论实数t满足什么关系时,β
1
,β
2
,β
3
,β
4
也是Ax=0的一个基础解系。
选项
答案
由于β
1
,β
2
,β
3
,β
4
均为α
1
,α
2
,α
3
,α
4
的线性组合,所以β
1
,β
2
,β
3
,β
4
均为Ax=0的解.下面证明β
1
,β
2
,β
3
,β
4
线性无关.设k
1
β
1
,k
2
β
2
,k
3
β
3
,k
4
β
4
=0,即(k
1
+tk
4
)α
1
+(tk
1
+k
2
)α
1
+(tk
2
+k
3
)α
1
+(tk
3
+k
4
)α
4
=0, 由于α
1
,α
2
,α
3
,α
4
线性无关,因此其系数全为零,即 [*]=1-t
4
可见,当1-t
4
≠0,即t≠±1时,上述方程组只有零解k
1
=k
2
=k
3
=k
4
=0,因此向量组β
1
,β
2
,β
3
,β
4
线性无关,又因Ax=0的基础解系是4个向量,故β
1
,β
2
,β
3
,β
4
也是Ax=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/SD34777K
0
考研数学二
相关试题推荐
设y=f(x)三阶可导,且[f(x)-2]/sin(x-1)3=-1,则()。
设总体X服从标准正态分布,(X1,X2,…,Xn)为总体的简单样本,,则()。
设方程x2一xy+y2=1确定y为x的函数,求y′|(1,1),y"|(1,1).
做某种试验时成功的概率为6/7,重复试验直到成功为止,则试验次数为3的概率为()
事件A、B互不相容,其概率均不为0,则下列结论中肯定成立的是().
设f(x)满足f’(x)+f(x)=ne-xcosnx,n为正整数,f(0)=0.设an=∫02πf(x)dx,求级数的和.
当m,n均为正整数时,讨论反常积分∫01的敛散性.
(2008年试题,一)设则在实数域上与A合同的矩阵为()
随机试题
美国哈佛大学心理学家麦克利兰提出成就需要理论的时间是()
类似于睑板腺囊肿的眼睑肿瘤是
减少房地产经纪纠纷的主要手段包括()。
根据资金时间分布的不同和评价的需要,常用的资金等值换算公式有()。
关于中国经济发展新常态的说法,正确的是()。
古代“六艺”(礼、乐、射、御、书、数)中的“御”是指()。
下列哪个表述最为正确?()[上海财经大学2011研]
《法经》中规定“六禁”的篇目是()。
甲雇佣乙为自己的长途货车司机。乙在送货过程中,因重大过失致行人丙受到伤害。对丙的伤害应由()(2010年一专一第49题)
下面关于域本地组的说法中,正确的是()。
最新回复
(
0
)