首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=0的解,则m=________。
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=0的解,则m=________。
admin
2021-01-31
60
问题
设A为三阶实对称矩阵,α
1
=(m,-m,1)
T
是方程组AX=0的解,α
2
=(m,1,1-m)
T
是方程组(A+E)X=0的解,则m=________。
选项
答案
1
解析
由AX=0有非零解得rA<3,从而λ=0为A的特征值,α
1
=(m,-m,1)
T
为其对应的特征向量。
由(A+E)x=0有非零解得r(A+E)<3,|A+E|=0,λ=-1为A的另一个特征值,其对应的特征向量为α
2
=(m,1,1-m)
T
,因为A为实对称矩阵,所以A的不同特征值对应的特征向量正交,于是有m=1。
转载请注明原文地址:https://kaotiyun.com/show/54x4777K
0
考研数学三
相关试题推荐
[2001年]设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij(i,j=1,2,…,n)的代数余子式,二次型记X=[x1,x2,…,xn]T,把f(x1,x2,…,xn)写成矩阵形式,并证明二
(2003年)设F(x)=f(x)g(x),其中函数f(x),g(x)在(一∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex.(1)求F(x)所满足的一阶方程;(2)求出F(x)
[2001年]设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij的代数余子式.二次型二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由?
[2001年]设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij的代数余子式.二次型记X=[x1,x2,…,xn]T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的矩阵为A
[2009年]设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3.求二次型f(x1,x2,x3)的矩阵的所有特征值.
(1996年)设函数z=f(u),方程u=φ(u)+∫yxp(t)dt确定u是x,y的函数,其中f(u),φ(u)可微;p(t),φ’(t)连续,且φ’(u)≠1.求
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,齐次方程组Ax=0的通解为c(1,0,一3,2)T,证明α2,α3,α4是A*x=0的基础解系.
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=a3有解.(Ⅰ)求常数a,b的值;(Ⅱ)求BX=0的通解.
随机试题
家庭暴力
左向右分流型先心病患儿生长发育落后是由于
女性,65岁,慢性咳嗽、咳痰20余年,每年持续3个月以上,以冬季为重。近3年出现活动后气急,偶有双下肢水肿。今日晨起突感右上胸针刺样痛,继之出现呼吸困难,大汗,不能平卧,急来诊。以下检查中最有价值的是
利福平的抗菌作用机制是
下列内容中,不属于测绘单位项目管理控制的目标是()。
《民用建筑工程室内环境污染控制规范》规定,民用建筑工程室内装修中所采用的人造木板及饰面人造木板进场时,必须有( )检测报告并应符合设计要求和本规范的规定。
为筹措研发新药品所需资金,2003年12月1日甲公司与丙公司签订购销合同。合同规定:丙公司购入甲公司积存的100箱B种药品,每箱销售价格为20万元。甲公司已于当日收到丙公司开具的银行转账支票,并交付银行办理收款。B种药品已于当日发出,每箱销售成本为10万元
新疆维吾尔自治区是中国面积最大、陆地边境线最长、毗邻国家最多的省区。()
小李结婚五年,小孩两岁,婆婆和她住在一起,帮助她照看小孩,最近为孩子教育问题,婆媳经常争吵,婆婆赌气回了老家,小李只好暂时请假在家,照顾孩子。社会工作者运用任务中心模式协助解决小李的问题需要具备的条件包括()。
It’sofficialthatmarriedpeoplearehealthier,oratleasttheythinktheyare.AnAmericansurveyof【C1】______100000people
最新回复
(
0
)