首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=0的解,则m=________。
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=0的解,则m=________。
admin
2021-01-31
54
问题
设A为三阶实对称矩阵,α
1
=(m,-m,1)
T
是方程组AX=0的解,α
2
=(m,1,1-m)
T
是方程组(A+E)X=0的解,则m=________。
选项
答案
1
解析
由AX=0有非零解得rA<3,从而λ=0为A的特征值,α
1
=(m,-m,1)
T
为其对应的特征向量。
由(A+E)x=0有非零解得r(A+E)<3,|A+E|=0,λ=-1为A的另一个特征值,其对应的特征向量为α
2
=(m,1,1-m)
T
,因为A为实对称矩阵,所以A的不同特征值对应的特征向量正交,于是有m=1。
转载请注明原文地址:https://kaotiyun.com/show/54x4777K
0
考研数学三
相关试题推荐
[2018年]设实二次型f(x1,x2,x3)=(x1-x2+x2)2+(x2+x3)2+(x1+ax3)2,其中a是参数.求f(x1,x2,x3)=0的解;
[2001年]设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij(i,j=1,2,…,n)的代数余子式,二次型二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
[2001年]设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij(i,j=1,2,…,n)的代数余子式,二次型记X=[x1,x2,…,xn]T,把f(x1,x2,…,xn)写成矩阵形式,并证明二
(2003年)设F(x)=f(x)g(x),其中函数f(x),g(x)在(一∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex.(1)求F(x)所满足的一阶方程;(2)求出F(x)
[2001年]设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij的代数余子式.二次型二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由?
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=a3有解.(Ⅰ)求常数a,b的值;(Ⅱ)求BX=0的通解.
已知α=[1,1,1]T是二次型2x12+x22+ax32+2x1x2+2bx1x3+2x2x3矩阵的特征向量,判断二次型是否正定,并求下列齐次方程组的通解:
设问方程组什么时候有解?什么时候无解?有解时,求出其相应的解.
随机试题
金融衍生工具的价值与合约标的资产紧密相关,这体现了金融衍生工具的()。
根据计划内容的明确性,可以将计划分为()
孩子从父母处学会语言,社会行为及如何判断正确与错误。这属于家庭的()
下列有关法官行为的论述中,哪些体现了审判独立的原则?()
拟在永乐河新建永乐水利枢纽,其主要功能为防洪、灌溉兼顾发电,并向邻近清源河流域的清源水库调水。主要建筑物由挡水坝、溢流坝及发电厂房等组成,最大坝高97m。永乐水利枢纽向清源水库输水水量为3×108m3/a,输水线路包括60km隧洞和70km渠道。
该商场本月的销项税额为( )该商场本月允许抵扣的进项税额为( )
下列各项中不会引起其他货币资金发生变动的是()。
π型人才指至少拥有两种专业技能,并能将多门知识融会贯通的高级复合型人才。π下面的两竖指两种专业技能,上面的一横指能将多门知识融会应用。根据上述定义,下列属于,π型人才的是:
下列语句中没有歧义的是:
Whydopeoplenowadaysbecomelessactive?
最新回复
(
0
)