首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 求正交矩阵Q和对角矩阵,使得QTAQ=。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 求正交矩阵Q和对角矩阵,使得QTAQ=。
admin
2018-04-12
69
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解。
求正交矩阵Q和对角矩阵
,使得Q
T
AQ=
。
选项
答案
因为A是实对称矩阵,所以α与α
1
,α
2
正交,所以只需将α
1
,α
2
正交。取 β
1
=α
1
, β
2
=α
2
-[*]。 再将α,β
1
,β
2
单位化,得 [*] 令Q=(η
1
,η
2
,η
3
),则Q
-1
=Q
T
,由实对称矩阵必可相似对角化,得 Q
T
AQ=[*]。
解析
将实对称矩阵A的特征向量正交化再单位化,以此作为列向量即可得到正交矩阵Q。
转载请注明原文地址:https://kaotiyun.com/show/SDk4777K
0
考研数学二
相关试题推荐
设A为n阶可逆矩阵,则下列结论正确的是().
证明f(x)是以π为周期函数。
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆.现将贮油罐平放,当油罐中油面高度为3/2b时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
设y=e-x是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|x=ln2=0的特解。
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程求f(u).
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设矩阵A与B相似,且求可逆矩阵P,使P-1AP=B.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.求a,b的值.
求证:元素均为1或-1的n(n≥2)阶行列式D的值为偶数.
随机试题
竹笋在我国主要产于________。
现代企业的会计制度具有国际通用规范的性质。()
A、 B、 C、 D、 C
关于抗疟药下列说法正确的是
以下对有关指标说法正确的是()。
台灯作为一个实体可由市场决定其生产量,这种需求量是()。
《尚书》是中国文学史上第一部记叙文和议论文。()
2019年9月23日,“()——庆祝中华人民共和国成立70周年大型成就展”开幕式在北京展览馆举行。中共中央政治局常委、国务院总理李克强出席开幕式并讲话。
Evidenceofthebenefitsthatvolunteeringcanbringolderpeoplecontinuestorollin."Volunteershaveimprovedphysicalands
Whenyourunyourhandsthroughyourlover’shair,you’reprobablynotthinkingaboutyourplaceinthesocialhierarchy.Givey
最新回复
(
0
)