首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 求正交矩阵Q和对角矩阵,使得QTAQ=。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 求正交矩阵Q和对角矩阵,使得QTAQ=。
admin
2018-04-12
53
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解。
求正交矩阵Q和对角矩阵
,使得Q
T
AQ=
。
选项
答案
因为A是实对称矩阵,所以α与α
1
,α
2
正交,所以只需将α
1
,α
2
正交。取 β
1
=α
1
, β
2
=α
2
-[*]。 再将α,β
1
,β
2
单位化,得 [*] 令Q=(η
1
,η
2
,η
3
),则Q
-1
=Q
T
,由实对称矩阵必可相似对角化,得 Q
T
AQ=[*]。
解析
将实对称矩阵A的特征向量正交化再单位化,以此作为列向量即可得到正交矩阵Q。
转载请注明原文地址:https://kaotiyun.com/show/SDk4777K
0
考研数学二
相关试题推荐
证明函数y=sinx-x单调减少.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f(x)单调减少;且f(1)=f’(1)=1,则
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
设函数f(x),g(x)在上连续,且g(x)>0,利用闭区间上连续函数性质,证明存在一点ξ∈(a,b),使
设u=e-xsinx/y,则э2u/эxэy在点(2,1/π)处的值________。
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.求A的全部特征值;
设已知线性方程组Ax=6存在2个不同的解。求λ.a;
求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
设n元线性方程组Ax=b,其中A=,x=(x1,…,xn)T,b=(1,0,…,0)T.(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
行列式
随机试题
实践是检验真理的唯一标准,这主要是因为()
将多台计算机连成网络后,不能实现()
以下对睾丸肿瘤的描述,错误的是
咳大量脓痰静置后分3层的疾病是
男,50岁。1周前心前区剧烈疼痛,随后心悸、气促,怀疑急性心肌梗死。起病4周后,病人反复低热,左肺底部有湿性啰区闻及心包摩擦音,此时应考虑并发
需采用“急则治其标”治则的病变有()。
公共建筑的无障碍电梯,以下哪一条设计要求不确切?
不能作为调节混凝土凝结时间、硬化性能的外加剂的是()
进出口许可证一经签发不得擅自更改证面内容。( )
简述基本的公司治理原则?
最新回复
(
0
)