首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。 (Ⅰ)写出f(x)在[—2,0)上的表达式; (Ⅱ)问k为何值时,f(x)在x=0处可导。
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。 (Ⅰ)写出f(x)在[—2,0)上的表达式; (Ⅱ)问k为何值时,f(x)在x=0处可导。
admin
2017-01-21
101
问题
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x
2
—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。
(Ⅰ)写出f(x)在[—2,0)上的表达式;
(Ⅱ)问k为何值时,f(x)在x=0处可导。
选项
答案
(Ⅰ)当—2≤x<0,即0≤x+2 <2时,则 f(x)=kf(x+2)=k(x+2)[(x+2)
2
—4]=kx(x+2)(x+4), 所以f(x)在[—2,0)上的表达式为 f(x)=kx(x+2)(x+4)。 (Ⅱ)由题设知f(0)=0。 [*] 令f
—
’
(0)=f
+
’
+(0),得k=[*]时,f(x)在x=0处可导。
解析
转载请注明原文地址:https://kaotiyun.com/show/SGH4777K
0
考研数学三
相关试题推荐
在抛物线y=x2上取横坐标为x1=1及x2=3的两点,作过这两点的割线.问该抛物线上哪一点的切线平行于这条割线?
差分方程yt+1-yt=t2t的通解为_______.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
在天平上重复称量一重为a的物品,假设各次称量结果相互独立且同服从正态分布0.95,n的最小值应小于自然数________.
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x1y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).当L与直线y=ax所围成平面图形的面积为8/3时,确定a的值.
计算曲面积分,∑为:
设D是由曲线y=x1/3,直线x=a(a>0)及x轴所围成的平面图形,Vx,Vy分别是D绕x轴,y轴旋转一周所得旋转体的体积.若Vy=Vx,求a的值.
假设X1,X2,…,Xn为来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4),证明:当n充分大时,随机变量近似服从正态分布,并指出其分布参数.
设曲线(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
随机试题
用盘形铣刀铣削蜗杆时,应先调整好横向切削位置,然后扳转工作台角度。()
对外币存款折算为人民币时,一般应按
dx=_________.
13.(2015年第67题)在急性胰腺炎发病过程中起关键作用的酶是
地龙不具有的功效是
诊断首先考虑为了明确诊断下列检查应查
如图6—4—2所示,水从A水箱通过直径为200mm的孔口流入B水箱,流量系数为0.62,设上游水面高程H1=3m,p1=5kPa,下游水面高程H2=2m,孔口恒定出流流量为()L/s。
采用简单的网络设备,实现数百米距离内不同计算机之间数据通讯、资源共享的技术,一般称为(),实现远距离数据通讯的网络称为(),将各个孤立的网络相互连起来的互联网络技术,就是所谓的(),如果仅在一个单位内部使用因特网,则可称为(
“x>1”是“|x|>1”的()。
February5th,2001Mr.TatsuhiloSeoDirector,PersonnelDepartmentSoftwareSuccessNamiki2-8-136-101Tokyo,JapanDearMr.Se
最新回复
(
0
)