首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)连续,且满足f(x)+∫0x(x-2-t)f(t)dt=6(x-2)ex,求f(x)。
设函数f(x)连续,且满足f(x)+∫0x(x-2-t)f(t)dt=6(x-2)ex,求f(x)。
admin
2019-12-06
49
问题
设函数f(x)连续,且满足f(x)+∫
0
x
(x-2-t)f(t)dt=6(x-2)e
x
,求f(x)。
选项
答案
由积分方程f(x)+∫
0
x
(x-2-t)f(t)dt=6(x-2)e
x
可知f(0)=﹣12。 由f(x)连续知上式中变上限积分可导,而初等函数6(x-2)e
x
是可导的,所以f(x)也可导。在方程两边对x求导得f
’
(x)+∫
0
x
f(t)dt-2f(x)=6(x-1)e
x
,且f
’
(0)=﹣30。 同理可知,f(x)二次可导,上式两端对x求导得 f
’’
(x)-2f
’
’(x)+f(x)=6xe
x
。 该二阶常系数线性微分方程的特征方程是λ
2
-2λ+1=0,故特征根是1(二重),于是对应的齐次方程的通解为F(x)=(C
1
+C
2
x)e
x
。因非齐次项Q(x)=6xe
x
,可设非齐次方程的一个特解为[*]=(Ax+B)x
2
e
x
,代入f
’’
(x)-2f
’
(x)+f(x)=6xe
x
可求得A=1,B=0,从而原方程的解为f(x)=(C
1
+C
2
x+x
3
)e
x
。 利用初值条件f(0)=﹣12,f
’
(0)=﹣30可得C
1
=﹣12,C
2
=﹣18,故 f(x)=(x
3
-18x-12)e
x
。
解析
转载请注明原文地址:https://kaotiyun.com/show/SUA4777K
0
考研数学二
相关试题推荐
在区间[-1,1]上的最大值为_______.
设f(x)是连续函数,并满足∫f(x)sinxdx=cos2x+C,又F(x)是f(x)的原函数,且满足F(0)=0,则F(x)=______.
设f(χ)具有连续导数,且F(χ)=∫0χ(χ2-t2)f′(t)dt,若当χ→0时F′(χ)与χ2为等价无穷小,则f′(0)=_______.
设平面区域D由直线y=x,圆x2+y2=2y及y轴所围成,则二重积分_____________.
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立.①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关.②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
若,求a,b的值.
设当χ→0时,(χ→sinχ)ln(1+χ)是比-1高阶的无穷小,而-1是比(1-cos2t)dt高阶的无穷小,则n为().
(07)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ
设z=z(x,y)是由x2一6xy+10y2一2yz—z2+18=0确定的函数,求z=z(x,y)的极值点和极值.
设f(x)连续,且满足f(x)=x+2∫0x(1-et-x)f(t)dt。(Ⅰ)验证f(x)满足f’’(x)+f’(x)-2f(x)=1,且f(0)=0,f’(0)=1;(Ⅱ)求f(x)。
随机试题
项目型组织结构的缺点是()。
保险人的义务的有()
流动采血监控工作不包括
公司出资存在哪些问题?若丙想转让股权以退出公司,应按何种方式进行?
2009年3月,某人由中方企业委派到合资企业工作,派遣单位和雇佣单位每月分别支付其工资1400元和8000元,按照协议,个人需向派遣单位缴款3000元。该个人每月应纳的个人所得税为()。
正达会计师事务所长期以来主要开展对银行、保险公司等金融机构的年报审计业务。2007年5月初,事务所的负责人张平成正在考虑下列客户的具体情况,以保持审计业务的独立性。下面是正达会计师事务所及注册会计师与客户之间往来的相关情况:(1)A保险公司于2
已知FeSO4.7H2O晶体在加热条件下发生如下反应:2FeSO4.7H2OFe2O3+SO2↑+SO3↑+14H2O↑;如下图装置经组装后,可用来检验上述反应中所有的气体产物,请回答下列问题:用于检验SO2气体的装置是:_________(填装置的
试论述初中生人际交往的新特点。
中国绘画是以庄子哲学为精神宗旨的。其最高境界是在人与对象的双重自然状态下实现物我浑融的境界。《庄子.田子方》载,宋元君招试画师,应试者皆___________,唯有一后到者,“解衣盘礴赢”,任性自然地投身于画作。宋元君称此人为“真画者”。所谓“真画者”,是
数据访问页中主要用来显示描述性文本信息的是()。
最新回复
(
0
)