首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设A= (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2016-10-20
69
问题
设A=
(Ⅰ)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(Ⅱ)对(Ⅰ)中任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
(Ⅰ)对增广矩阵(A :ξ
1
)作初等行变换,有 [*] 得Ax=0的基础解系(1,-1,2)
T
和Ax=ξ
1
的特解(0,0,1)
T
. 故ξ
2
=(0,0,1)
T
+k(1,-1,2)
T
或ξ
2
=(k,一k,2k+1)
T
,其中k为任意常数. 因为A
2
=[*],对增广矩阵(A
2
:ξ
1
)作初等行变换,有 [*] 得A
2
x=0的基础解系(-1,1,0)
T
,(0,0,1)
T
.又A
2
x=ξ
1
有特解 [*] 其中t
1
,t
2
为任意常数. (Ⅱ)因为 [*] 所以ξ
1
,ξ
2
,ξ
3
必线性无关.
解析
其实求ξ
2
和ξ
3
就是分别求方程组Ax=ξ
1
与方程组A
2
x=ξ
1
的通解.
转载请注明原文地址:https://kaotiyun.com/show/SgT4777K
0
考研数学三
相关试题推荐
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件().
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
设α1=(2,-1,3,0),α2=(1,2,0,-2),α3=(0,-5,3,4),α4=(-1,3,t,0),则________时,α1,α2,α3,α4线性相关.
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
某公共汽车站每隔10min有一辆汽车到达,一位乘客到达汽车站的时间是任意的,求他等候时间不超过3min的概率.
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
设A,B是同阶正定矩阵,则下列命题错误的是().
设向量α=α1+α2+…+αs(s>1),而β1=α-α1,β2=α-α2,…,βs=α-αs,则().
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
随机试题
质量差价主要是由于商品生产过程中所耗费的_______和商品使用价值的不同而形成的。
6个月女孩,中度脱水酸中毒,经纠正酸中毒与补液12小时后出现嗜睡,呼吸较前为浅,心音低钝,心率160次/分,腹胀,肠鸣音弱。血钠为135mmol/L。为明确诊断应做的辅助检查是
经甘油一酯途径合成甘油三酯主要存在于
对盐酸乙胺丁醇描述正确的有
某大型物资管理部门打算实行仓库物流的自动化,可实施的方案有两个,这两个方案都可以达到仓库物流自动化的目标。但是,两方案初期投资额、年作业费用及寿命期不同(如表1-2所示),基准收益率为12%。已知:(P/A,12%,7)=4.564,(P/A,12%,13
一般心理问题的特点包括()。
【2014年山东烟台】教师有指导学生的学习和发展,评定学生品行和学业成绩的义务。()
某报告显示,随着家庭收入的增加,中国儿童平均身高增加。家庭人均年收入最低组的城市男、女生和农村男、女生与家庭人均收入最高组相比,平均身高分别低3.8cm、3.2cm、5.1cm、5.4cm。因此,专家认为越是贫穷家庭的孩子,身高越低。以下
罪犯肯定就是甲、乙、丙三人中的一个人。乙没有作案时间,可以排除;丙不掌握作案的手段,也可以排除;因此可以断定,甲一定是罪犯。以下哪一项与上面的推理方法相同?
1)Peoplewithdiabeteshavetoomuchsugarintheirblood,soadrugthatlowersbloodsugaroughttobeagoodtreatment,right
最新回复
(
0
)