首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设A= (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2016-10-20
65
问题
设A=
(Ⅰ)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(Ⅱ)对(Ⅰ)中任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
(Ⅰ)对增广矩阵(A :ξ
1
)作初等行变换,有 [*] 得Ax=0的基础解系(1,-1,2)
T
和Ax=ξ
1
的特解(0,0,1)
T
. 故ξ
2
=(0,0,1)
T
+k(1,-1,2)
T
或ξ
2
=(k,一k,2k+1)
T
,其中k为任意常数. 因为A
2
=[*],对增广矩阵(A
2
:ξ
1
)作初等行变换,有 [*] 得A
2
x=0的基础解系(-1,1,0)
T
,(0,0,1)
T
.又A
2
x=ξ
1
有特解 [*] 其中t
1
,t
2
为任意常数. (Ⅱ)因为 [*] 所以ξ
1
,ξ
2
,ξ
3
必线性无关.
解析
其实求ξ
2
和ξ
3
就是分别求方程组Ax=ξ
1
与方程组A
2
x=ξ
1
的通解.
转载请注明原文地址:https://kaotiyun.com/show/SgT4777K
0
考研数学三
相关试题推荐
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有2个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤(4)为4个温控器显示的按递增顺序排列温度值,则事件E等于().
设β,α1,α2线性相关,β,α2,α3线性无关,则().
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
设α1,α2,…,αs均为n维向量,下列结论不正确的是().
写出过点A(2,0,0),B(0,1,0),C(0,0,4)的圆周方程.
已知级数,则:(1)写出级数的第五项和第九项u5,u9;(2)计算出部分和S3,S10;(3)写出前几项部分和Sn的表达式;(4)用级数收敛的定义验证该级数收敛,并求和.
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
设函数f(x)住[0,+∞)上连续,单调不减且f(0)≥0.试证函数在[0,+∞)上连续且单调不减(其中n>0).
随机试题
泛点气速是填料吸收塔空塔速度的上限。
根据《期货交易管理条例》的规定,期货交易的收费项目、收费标准和管理办法由中国期货业协会统一制定并公布。()
在中国境内未设立机构、场所的非居民企业从中国境内取得的收入,按全额作为企业所得税应纳税所得额的有()。
安全控制可以从以下哪些方面进行界定,以发挥其特性()。
下列各句中,没有语病且句意明确的一句是()。
按照资本资产定价模型,确定特定证券资产的必要收益率所考虑的因素有()。
下列关于我国地理常识的说法错误的是:
班干部都参加了奥运志愿服务,小赵也参加了奥运志愿服务,所以,小赵是班干部。以下哪项中的推理方式与上文中的最相似?
この近くに映画館もあればレストランもあります。
Speakinginpublicismostpeople’sleastfavoritething.Thereasonisthatwe’reallafraidofmakingfoolsofourselves.The
最新回复
(
0
)