首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设A= (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2016-10-20
53
问题
设A=
(Ⅰ)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(Ⅱ)对(Ⅰ)中任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
(Ⅰ)对增广矩阵(A :ξ
1
)作初等行变换,有 [*] 得Ax=0的基础解系(1,-1,2)
T
和Ax=ξ
1
的特解(0,0,1)
T
. 故ξ
2
=(0,0,1)
T
+k(1,-1,2)
T
或ξ
2
=(k,一k,2k+1)
T
,其中k为任意常数. 因为A
2
=[*],对增广矩阵(A
2
:ξ
1
)作初等行变换,有 [*] 得A
2
x=0的基础解系(-1,1,0)
T
,(0,0,1)
T
.又A
2
x=ξ
1
有特解 [*] 其中t
1
,t
2
为任意常数. (Ⅱ)因为 [*] 所以ξ
1
,ξ
2
,ξ
3
必线性无关.
解析
其实求ξ
2
和ξ
3
就是分别求方程组Ax=ξ
1
与方程组A
2
x=ξ
1
的通解.
转载请注明原文地址:https://kaotiyun.com/show/SgT4777K
0
考研数学三
相关试题推荐
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有2个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤(4)为4个温控器显示的按递增顺序排列温度值,则事件E等于().
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
某国经济可能面临三个问题:A1=“高通胀”,A2=“高失业”,A3=“低增长”,假设P(A1)=0.12,P(A2)=0.07,P(A3)=0.05,P(A1∪A2)-0.13,P(A1∪A3)=0.14,P(A2∪A3)=0.10,P(A1∩A2∩
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
设函数f(x)在(-∞,+∞)内连续,且试证:若f(x)为单调不增,则F(x)单调不减.
随机试题
当冲突双方势均力敌,争执不下,需要采取权宜之计时,可以采用的策略是()
下列关于缺铁性贫血的叙述,错误的是
在病情观察中,中医的“四诊”方法是()。
某媒体未征得艾滋病孤儿小兰的同意,发表了一篇关于小兰的报道,将其真实姓名、照片和患病经历公之于众。报道发表后,隐去真实身份开始正常生活的小兰再次受到歧视和排斥。下列哪一选项是正确的?()(07年司考.卷三.单22)
在单缝夫琅禾费衍射实验中,单缝宽度a=1×10-4m,透镜焦距f=0.5m。若用λ=400nm的单色平行光垂直入射,中央明纹的宽度为()。
赵老师从因特网上找到了一份对自己有用的文字材料,他用复制、粘贴命令把它放到Word中,发现里面有大量的无用空格,他打算把这些空格全部去掉,下列方法中最适当的是()。
皮影戏的发源地是陕西。()
①科学进步的简单模式是提出理论,并从中推导出假设,然后假设接受各种技术或方法的检验。如果假设通过了检验,该理论就得到了某种程度的确证;如果假设被实验证伪,这个理论就得做出某种程度的改变,或者被一个新理论所取代。②科学中有很多理论已经被充分证实并被
TheGrowingBacklashAgainstOverparentingWhatparentinghadcometolooklikeatthedawnofthe21stcentury?Overobsesse
A、Childrenwillmovemoreandconsumemoreenergyiftheydon’twatchTV.B、Childrenwillspendmoretimestudyingiftheyaren
最新回复
(
0
)