设z=z(x,y)是由9x2—54xy+90y2一6yz—z2+18=0确定的函数,(Ⅰ)求z=z(x,y)一阶偏导数与驻点;(Ⅱ)求z=z(x,y)的极值点和极值.

admin2015-04-30  54

问题 设z=z(x,y)是由9x2—54xy+90y2一6yz—z2+18=0确定的函数,(Ⅰ)求z=z(x,y)一阶偏导数与驻点;(Ⅱ)求z=z(x,y)的极值点和极值.

选项

答案(Ⅰ)利用一阶全微分形式不变性,将方程求全微分即得 18xdx一54(ydx+xdy)+180ydy一6zdy一6ydz一2zdz=0, 即 (18x一54y)dx+(180y一54x一6z)dy一(6y+2z)dz=0. 从而 [*] ②可化简为x=3y,由③可得z=30y一9x=3y,代入①可解得两个驻点x=3,y=1,z=3与z=一3,y=一1,z=一3. (Ⅱ)z=z(x,y)的极值点必是它的驻点,为判定z=z(x,y)在两个驻点处是否取得极值,还需求z=z(x,y)在这两点的二阶偏导数. 注意,在驻点P=(3,1,3),Q=(一3,一1,一3)处,[*]=0 由(3y+z)[*]=9x一27y→ 在驻点P,Q处 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/SybD777K
0

最新回复(0)