首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明: ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明: ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.
admin
2016-09-30
77
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).证明:
ξ
1
,ξ
2
∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)=0.
选项
答案
令F(x)=∫
0
1
f(t)dt,F’(x)=f(x), ∫
0
2
f(t)dt=F(2)一F(0)=F’(f)(2一0)=2f(c),其中0<c<2. 因为f(x)在[2,3]上连续,所以f(x)在[2,3]上取到最小值m和最大值M, [*] 由介值定理,存在x
0
∈[2,3],使得f(x
0
)=[*],即f(2)+f(3)=2f(x
0
),于是f(0)=f(c)=f(x
0
),由罗尔定理,存在ξ
1
∈(0,c)[*](0,3),ξ
2
∈(f,x
0
)[*](0,3),使得f’(ξ
1
)=f’(ξ
2
)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/T8T4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
根据级数收敛与发散的定义判别下列级数的收敛性,并求出其中收敛级数的和:
曲线y=(x-1)(x-2)2(x-3)3(x-4)4的拐点是__________.
随机试题
银基钎料主要是()的合金。
建国以来我们在社会主义建设中所经历的曲折和失误,归根结底,就在于没有完全搞清楚()
水泥按其物化性质属于().
A公司为支付货款,向B公司签发了一张金额为200万元的银行承兑汇票,某商业银行作为承兑人在票面上签章。B公司收到汇票后将其背书转让给C公司,以偿还所欠C公司的租金,但未在被背书人栏内记载C公司的名称。C公司欠D公司一笔应付账款,遂直接将D公司记载为B公司的
若该企业2015年第二季度产量同比增长降低至8%,环比增长速度为20%,则2015年第一季度的产量为()万吨。
下列关于缓刑的表述,正确的有()。
求微分方程y"+y'-2y=xex+sin2x的通解.
设个体域为整数集,下列公式中其值为1的是(61)。
Thehotelprovidesfreeshuttle______tothetrainstationandtheairport.
Inthisageofthekeyboard,somepeopleseemtothinkhandwritinglessonsare______.
最新回复
(
0
)