首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明: ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明: ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.
admin
2016-09-30
65
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).证明:
ξ
1
,ξ
2
∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)=0.
选项
答案
令F(x)=∫
0
1
f(t)dt,F’(x)=f(x), ∫
0
2
f(t)dt=F(2)一F(0)=F’(f)(2一0)=2f(c),其中0<c<2. 因为f(x)在[2,3]上连续,所以f(x)在[2,3]上取到最小值m和最大值M, [*] 由介值定理,存在x
0
∈[2,3],使得f(x
0
)=[*],即f(2)+f(3)=2f(x
0
),于是f(0)=f(c)=f(x
0
),由罗尔定理,存在ξ
1
∈(0,c)[*](0,3),ξ
2
∈(f,x
0
)[*](0,3),使得f’(ξ
1
)=f’(ξ
2
)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/T8T4777K
0
考研数学三
相关试题推荐
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
由概率的公理化定义证明:(1)P()=1-P(A);(2)P(A-B)=P(A)-P(AB).特别地,若A⊃B,则P(A-B)=P(A)-P(B).且P(A)≥P(B);(3)0≤P(A)≤1;(4)P(A∪B)
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
根据级数收敛与发散的定义判别下列级数的收敛性,并求出其中收敛级数的和:
用适当的变换将下列方程化为可分离变量的方程,并求出通解:;(2)(x+y)2yˊ=1;(3)xyˊ+y=yln(xy);(4)xyˊ+x+sin(x+y)=0.
讨论下列曲线的凹凸性:(1)y=x+1/x;(2)y=ex2;(3)y=x2/4+sinx;(4)y=ln(1+x2).
设证明:f(x,y)在点(0,0)处连续且可偏导,并求出fx(0,0)和fy(00)的值.
曲线y=1/x+ln(1+ex)渐近线的条数为________.
随机试题
Didyouexamineyourpapermoneyclosely?Seeifyoucanlocatea$5,$10,or$20billprintedbefore1964andmarked"Federal
女,8个月,因频繁呕吐、腹泻3天入院。大便稀水样,无腥臭味,10余次/日,量中等,查体:呼吸46次/分;脉搏140次/分,精神萎靡,皮肤弹性差,四肢温,前囟眼窝凹陷,心音低钝,腹胀,肠鸣音减弱,四肢无力,腱反射弱。化验:大便镜检WBC0~1/HP,血钠1
胶片感光乳剂层受光照射后发生的光化学反应是
口腔癌“无瘤”手术的要求不包括
实行会员分级结算制度的期货交易所,应当向结算会员收取结算担保金。()
迄今为止发展最快、渗透性最强、应用关键技术最广泛的行业是( )。
下列不是普契尼创作的歌剧的是()
Youshouldspendabout20minutesonthistask.Thetablebelowshowssocialandeconomicindicatorsforfourcountriesin1
Exercisehaslongbeentreatedasthecure-allforeverythingthatailsyou.Supporterssayyouwillloseweightandbringyour
Learningisanessentialprocessforlivingthingstoacquirenecessaryskillsandbehaviors.Scientistshavealreadyfoundthat
最新回复
(
0
)