首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 求函数u=xy+2yz在约束条件x2+y2+z2=10下的最大值和最小值.
[2010年] 求函数u=xy+2yz在约束条件x2+y2+z2=10下的最大值和最小值.
admin
2019-04-05
69
问题
[2010年] 求函数u=xy+2yz在约束条件x
2
+y
2
+z
2
=10下的最大值和最小值.
选项
答案
先构造拉格朗日函数,令其导数等于零得一方程组,解此方程组可求得可 能最值点. 用拉格朗日乘数法求之.令F(x,y,z)=xy+2yz+λ(x
2
+y
2
+z
2
一10),则 [*] 由式①、式②分别得 λ=一y/(2x), ⑤ 又λ=一y/z,故 [*], 即 z=2x. ⑥ 将式⑥代入式②得到 5x+2λy=0, 即 λ=一5x/(2y) (y≠0). ⑦ 由式⑤、式⑦得到 λ=一5x/(2y)=一y/(2x), 即 5x
2
=y
2
. ⑧ 将式⑥、式⑧代入式④,得到10x
2
=10, 即 x=±1. 当x=1时,z=2,y=±√5;当x=一l时,z=-2,y=±√5. 令y=0,由式②、式④得到x=一2z,4z
2
+z
2
=5z
2
=10,即z=±√2.因此, 点(-2√2,0,√2)、(2√2,0,一√2)也是可能极值点. 综上所述,可能的极值点有 A(1,√5,2),B(一l,√5,一2),C(1,一√5,2), D(一1,一√5,一2),E(2√2,0,一√2),F(一2√2,0,√2). 比较u在各点处的值,有 u(1,√5,2)=u(一l,一√5,-2)=5√5为最大值, u(1,一√5,2)=u(一1,√5,一2)=一5√5为最小值, 故所求函数u的最大值和最小值分别为5√5,一5√5.
解析
转载请注明原文地址:https://kaotiyun.com/show/TPV4777K
0
考研数学二
相关试题推荐
设A是m×n阶矩阵,若ATA=O,证明:A=O.
设α1,α2……αn为n个线性无关的n维列向量,β1,β2,…,βn为任意n个n维列向量。证明:α1,α2……αn可由β1β2……βn线性表示的充要条件是β1β2……βn线性无关。
设α>0,β>0为任意正数,当x→+∞时将无穷小量:,e-x按从低阶到高阶的顺序排列.
试确定常数a与n的一组值,使得当x→0时,一ln[e(1+x2)]与axn为等价无穷小.
已知A是正定矩阵,证明|A+E|>1.
(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,J6『可唯一表示为α1,α2,α3,α4的线性组合?
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1)求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L及两坐标轴所围图形的面积最小
设当x→0时,ex-(ax2+bx+1)是x2的高阶无穷小,则().
(2004年试题,三(2))设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=-x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[一2,0)上的表达式;(Ⅱ)问k为何值时f(x)在x=0处可
[2009年]设函数f(x,y)连续,则∫12dx∫x2f(x,y)dy+∫12dy∫y4-yf(x,y)dx=().
随机试题
能敛肺涩肠的药物是()(1994年第139题)
A、大流行B、散发C、有季节性D、暴发E、流行发病率呈历年一般水平的是
根据室内环境污染控制的不同要求,下列属于I类民用建筑工程的是()。
如果某项资产不能再为企业带来经济利益,即使是由企业拥有或者控制的,也不能作为企业的资产在资产负债表中列示。
资料:2007年7月1日发行的某债券,面值100元,期限3年,票面年利率8%,每半年付息一次,付息日为6月30日和12月31日。要求:某投资者2009年7月1日以97元购入,试问该投资者持有该债券至到期日的收益率是多少?(2007年)
能促进钙的吸收的维生素是()。
很多人认为,农村家养的土鸡,土猪,采用传统方式喂养,吃的是粮食、蔬菜、青草,不吃饲料,生长周期长,运动量大,肌肉紧实,更有营养,味道更加鲜美,所以市场上的土鸡,土猪通常售价更高。但研究者指出,其实土鸡或土猪并不比集中饲养的肉鸡和肉猪更有营养、更安全。
A、 B、 C、 D、 B
二次型f(x1,x2,x3,x4)=x32+4x42+2x1x2+4x3x4的规范形是__________.
HappinessIsaJourneyThereisnowaytohappiness.Happinessistheway./Don’twastetoomuchofyourtimestudying,wor
最新回复
(
0
)