首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(χ)为区间[0,1]上的非负连续函数. (1)证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积; (2)设f(χ)在(0,1)内可导,且f′(χ)>-,
设y=f(χ)为区间[0,1]上的非负连续函数. (1)证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积; (2)设f(χ)在(0,1)内可导,且f′(χ)>-,
admin
2017-09-15
83
问题
设y=f(χ)为区间[0,1]上的非负连续函数.
(1)证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积;
(2)设f(χ)在(0,1)内可导,且f′(χ)>-
,证明(1)中的c是唯一的.
选项
答案
(1)S
1
(c)=cf(c),S
2
(c)=∫
c
1
f(t)dt-∫
1
c
f(t)dt即证明S
1
(c)=S
2
(c)或cf(c)+∫
c
1
f(t)dt=0. 令φ(χ)=χ∫
1
χ
f(t)dt,φ(0)=φ(1)=0,根据罗尔定理,存在c∈(0,1),使得φ′(c)=0,即cf(c)+∫
1
c
f(t)dt=0,所以S
1
(c)=S
2
(c),命题得证. (2)令h(χ)=χf(χ)-∫
χ
1
f(t)dt,因为h′(χ)=2f(χ)+f′(χ)>0,所以h(χ)在[0,1]上为单调函数,所以(1)中的c是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/Adt4777K
0
考研数学二
相关试题推荐
证明:[*]
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
求函数f(x)=x2ln(1+x)在x=0处的n阶导数f(n),(x)(n≥3).
已知函数f(x)=ax3-6ax2+b(a>0),在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.
证明:
设D是位于曲线下方、x轴上方的无界区域.当a为何值时,y(a)最小?并求此最小值.
为清除井底的污泥,用缆绳将抓斗放人井底,抓起污泥后提出井口(见图).已知井深30m,抓斗自重400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s,在提升过程中,污泥以20N/s的速度从抓斗缝隙中漏掉.现将抓起污泥的抓斗提升至井口,问克
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程求f(u).
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
,则P12009P2-1=_______.
随机试题
秦汉时期,为防止匈奴进犯,在一些边塞处广种()
A、>2000mlB、>2500mlC、<1500mlD、1500mlE、500ml肾盂肾炎每日入液量()
下列各项与葡萄胎鉴别诊断无关的是
硬腭口腔面有一层紧密不易分离的软组织,关于它的组成下列哪项是正确的
患者,女,70岁。肝硬化腹腔积液半年,5天前出现发热,腹痛。查体:体温38.5℃,脉搏105次/分,呼吸22次/分,腹壁有压痛及反跳痛,踝部见可凹性水肿。腹腔积液检查:微黄色,浑浊,蛋白含量升高,细胞数0.8×109/L,白细胞数0.5×109/L,中性粒
下列各项中,构成应收账款入账价值的有()。
市场经济是()。
【2013年滨州市北海新区真题】指导课程编制过程最为关键的依据是()。
某水果店只有进货价低于正常价格时,才能以低于市场的价格卖水果而获利;除非该水果店的销售量很大,否则,不能从果农那里购得低于正常价格的水果;要想有大的销售量,该水果店就要拥有特定品种水果的独家销售权。因为种种原因,该水果店没有得到特定品种水果的独家销售权。由
Man:Why,youhavetoaskyourparentstopayyourrent?Women:Well,Iamunabletomakeendsmeet.Question:Whatdoweknowa
最新回复
(
0
)