首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求出一个齐次线性方程组,使它的基础解系是η1=(2,一1,1,1)T,η2=(一1,2,4,7)T.
求出一个齐次线性方程组,使它的基础解系是η1=(2,一1,1,1)T,η2=(一1,2,4,7)T.
admin
2016-10-27
45
问题
求出一个齐次线性方程组,使它的基础解系是η
1
=(2,一1,1,1)
T
,η
2
=(一1,2,4,7)
T
.
选项
答案
由η
1
,η
2
是Ax=0的基础解系,知n—r(A)=2,即r(A)=2.对于齐次方程组[*]x=0,有 [*] 得基础解系(一2,一3,1,0)
T
,(一3,一5,0,1)
T
. 所以[*]为所求.
解析
由A(η
1
,η
2
)=0有(η
1
,η
2
)
T
A
T
=0,可见
x=0的解就是A
T
的列向量(即A的行向量).
转载请注明原文地址:https://kaotiyun.com/show/TTu4777K
0
考研数学一
相关试题推荐
[*]
A、 B、 C、 D、 C
求下列已知曲线围成的平面图形绕指定的轴旋转而形成的旋转体的体积:(1)xy=a2,y=0,x=a,x=2a(a>0)绕x轴和y轴;(2)x2+(y-2)2=1,绕x轴;(3)y=lnx,y=0,x=e,绕x轴和y轴;(4)x2+y2=4,
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设Q={(x,y,z)丨x2+y2+z2≤1},求.
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:最多试3把钥匙就能打开门
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
设随机变量X服从参数为(2,p)的二项分布,随机变量y服从参数为(3,p)的二项分布,若P丨x≥1丨=5/9,则P丨Y≥1丨=_________.
求曲面积分其中S是球面x2+y2+z2=4外侧在z≥0的部分.
设二次型f(x1,x2,x3)=XTAX=ax12+222+(-232)+2bx32(b>0),其中二次矩阵A的特征值之和为1,特征值之积为-12.(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型f化为标准形,并写出所用的正交变换
随机试题
腹膜透析的常见并发症是
贺拉斯最重要的美学著作是______。
本-周蛋白尿见于
目眩耳鸣,腰膝酸软,遗精乏力,舌红苔薄,脉弦细数。治法宜用:
干烤法杀灭芽孢的条件是
患者,女,29岁。外感风邪而偏正头痛,恶寒发热,目眩鼻塞,舌苔薄白,脉浮,适合选择
创立大会的职权不包括()
“进口口岸”栏:()。“提运单号”栏:()。
期货公司应当及时将投资者适当性制度实施方案及相关制度报公司所在地中国证监会派出机构备案。()
(复旦大学2011)以下不属于金融抑制内容范围的是()。
最新回复
(
0
)