首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知随机变量X与Y相互独立且都服从参数为的0—1分布,即P{X=0}=P{X=1}=.P{Y=0}=P{Y=1}=定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立
已知随机变量X与Y相互独立且都服从参数为的0—1分布,即P{X=0}=P{X=1}=.P{Y=0}=P{Y=1}=定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立
admin
2016-01-12
64
问题
已知随机变量X与Y相互独立且都服从参数为
的0—1分布,即P{X=0}=P{X=1}=
.P{Y=0}=P{Y=1}=
定义随机变量Z=
求Z的分布;(X,Z)的联合分布;并问X与Z是否独立
选项
答案
由于(X,Y)是二维离散随机变量,故由边缘分布及相互独立可求得联合分布;应用解题一般模式,即可求得Z及(X,Z)的分布,进而判断X、Z是否独立. 由题设知 [*] 将其改写成矩阵形式,求Z、(X,Z)的分布: [*] 由此可得Z服从参数p=[*]的0一1分布;所以(X,Z)的联合概率分布为 [*] 因P{X=i,Z=j}=[*]=P{X=i}P{Z=j}(i,j=0,1),故X与Z独立.
解析
转载请注明原文地址:https://kaotiyun.com/show/TZU4777K
0
考研数学三
相关试题推荐
设β,α1,α2线性相关,β,α2,α3线性无关,则().
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
(1)第一类曲线积分的积分弧L是_________的(定向、不定向);利用L的参数方程将这个积分化为定积分时,下限α必须____________上限β.(2)第二类曲线积分的积分弧L是____________的(定向、不定向);利用L的参数方程将这个积分
已知函数y=f(x)为一指数函数与一幂函数之积,满足:(2)y=f(x)在(-∞,+∞)内的图形只有一条水平切线与一个拐点,试写出f(x)的一个可能的表达式.
设随机变量X,Y相互独立,它们的分布函数为FX(x),Fy(y),则Z=min(X,Y)的分布函数为().
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于6的概率α,并用泊松分布求出α的近似值(小数点后取两位有效数字).[附表]
设两个随机变量X与Y独立同分布,P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式中成立的是().
设随机变量X服从参数为λ的指数分布,则
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{|x|<x}=α,则x等于().
随机试题
适用保护管辖原则的限制条件。
联系实际论述信息机关的重要性。
某工程项目的施工招标文件中表明该工程采用综合单价计价方式,工期为15个月。承包单位投标所报工期为13个月。合同总价确定为8000万元。合同约定:实际完成工程量超过估计工程量25%以上时允许调整单价:拖延工期每天赔偿金为合同总价的1‰,最高拖延工期赔偿限额
矿业工程施工阶段质量控制的重点是:施工工艺和()。
下列关于建筑业企业资质等级相关条件的表述中,符合二级施工总承包资质法定条件的有()。
打开输入法软键盘的方法是将鼠标指针指向中文输入法状态提示框的软键盘按钮上,双击鼠标左键。()
科学技术研究中,“马太效应”导致的结果是()。
看图:两个圆,大小相同,相互分离。请问你会想到什么?
数据库中对概念模式内容进行说明的语言是
ThechangesingloballyaveragedtemperaturethathaveoccurredattheEarth’ssurfaceoverthepastcenturyaresimilarinsize
最新回复
(
0
)