首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知f(x)和g(x)在[a,b]上连续,在(a,b)内具有二阶导数,且在(a,b)内存在相等的最大值,又设f(a)=g(a),f(b)=g(b),试证明:存在ξ∈(a,b)使得f’’(ξ)=g’’(ξ)。
已知f(x)和g(x)在[a,b]上连续,在(a,b)内具有二阶导数,且在(a,b)内存在相等的最大值,又设f(a)=g(a),f(b)=g(b),试证明:存在ξ∈(a,b)使得f’’(ξ)=g’’(ξ)。
admin
2016-03-16
84
问题
已知f(x)和g(x)在[a,b]上连续,在(a,b)内具有二阶导数,且在(a,b)内存在相等的最大值,又设f(a)=g(a),f(b)=g(b),试证明:存在ξ∈(a,b)使得f’’(ξ)=g’’(ξ)。
选项
答案
令φ(x)=f9x)一g(x),根据f(a)=g(a),f(b)=g(b),则有φ(a)=φ(b)=0。设x
1
,x
2
∈(a,b),且[*],已知f(x)和g(x)在(a,b)内存在相等的最大值,因此f(x
1
)=g(x
2
),于是φ(x
1
)=f(x
1
)一g(x
1
)≥0,φ(x
2
)=f(x
2
)一g(x
2
)≤0。如果φ(x
1
)=0或φ(x
2
)=0,则令η=x
1
,或x
2
,有φ(η)=0;如果φ(x
1
)>0,φ(x
2
)<0,根据零点定理,存在η∈(x
1
,x
2
),使得φ(η)=0。此时φ(x)在[a,b]上有3个不同的零点a,η,b,在区间[a,η]和[η,b]上分别应用罗尔定理,则存在ξ
1
∈(a,η),ξ
2
∈(a,b),满足φ’(ξ
1
)=φ’(ξ
2
)=0,再在[ξ
1
,ξ
2
]上继续应用罗尔定理可知,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ’’(ξ)=0,即f’’(f)=g’’(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/U7U4777K
0
考研数学三
相关试题推荐
中国历史的每一步向前,无不源于伟大民族精神的推动;中华民族的每一个成就,无不源于伟大民族精神的书写。伟大民族精神的核心是
法治和德治,是治国理政不可或缺的两种方式,如车之两轮或鸟之两翼,忽视其中的任何一个,都将难以实现国家的长治久安。下列关于法治和德治的说法,正确的是
爱国不是简单的情感表达,而是一种理性的行为,要讲原则、守法律,以合理合法的方式进行。真正的爱国者应该
弘扬爱国主义精神,就要深入了解中华民族5000多年源远流长的文明史,不断加深对祖国悠久历史、灿烂文化的认同,从世代积累沉淀的中华文化中汲取营养和智慧,自觉延续文化基因、萃取思想精华。这是因为,文化传统是
记者在采访2015年诺贝尔生理学或医学奖的中国女药学家屠呦呦时问她:“你在小鼠和猴子身上测试了青蒿素,证明它是有效的之后,你自己也服了药。你害怕吗?”屠呦呦答:“我们担心药物是否安全。我和两位同事服了药,表明药不会死人。我认为这是我作为药物化学家的责任和工
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
将函数分别展开成正弦级数和余弦级数.
设函数z=f(x,-y)在点P(x,y)处可微,从x轴正向到向量l的转角为θ,从x轴的正向到向量m的转角为θ+π/2,求证:
下列各函数均为x→0时为无穷小,若取x为基本无穷小,求每个函数的阶:
图2.14中有三条曲线a,b,c,其中一条是汽车的位置函数的曲线,另一条是汽车的速度函数的曲线,还有一条是汽车的加速度函数的曲线,试确定哪条曲线是哪个函数的图形,并说明理由.
随机试题
下列关于有关机关裁决适用法的情况的表述,正确的是()
运单是交货凭证。()
下列关于操作风险的说法,不正确的是()。
急性病毒性心肌炎患者最重要的护理措施是()。
社会主义核心价值观
下列选项中,对心理健康理解不正确的是()
甲因飞机失事失踪,利害关系人申请其死亡的时间是()
Jackreturnedthepentohisclassmate.Jack______thepen______hisclassmate.
Itisnoaccidentthatmoreandmorepeopleareeducatingtheirchildrenathome.HomeschoolingintheUnitedStatesisnolong
A、TherootofJim’shealthproblems.B、Thewoman’sproblemswithherworkaholicprofessor.C、Jim’srelationshipwithhisprofess
最新回复
(
0
)