首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是连续且单调递增的奇函数,设F(x)=∫0x(2u-x)f(x-u)du,则F(x)是( )
设f(x)是连续且单调递增的奇函数,设F(x)=∫0x(2u-x)f(x-u)du,则F(x)是( )
admin
2017-11-30
60
问题
设f(x)是连续且单调递增的奇函数,设F(x)=∫
0
x
(2u-x)f(x-u)du,则F(x)是( )
选项
A、单调递增的奇函数。
B、单调递减的奇函数。
C、单调递增的偶函数。
D、单调递减的偶函数。
答案
B
解析
令x-u=t,则
F(x)=∫
0
x
(x-2t)f(t)dt,F(-x)=∫
0
-x
(-x-2t)f(t)dt,
令t=-u,
F(-x)=-∫
0
x
(-x+2u)f(-u)du=∫
0
x
(x-2u)f(-u)du。
因f(x)是奇函数,
f(x)=-f(-x),F(-x)=-∫
0
x
(x-2u)f(u)du,
则有F(x)=-F(-x)为奇函数。
F’(x)=∫
0
x
f(t)dt-xf(x),
由积分中值定理可得∫
0
x
f(t)dt=f(ξ)x,ξ介于0到x之间,
F’(x)=f(ξ)x-xf(x)=[f(ξ)-f(x)]x,
因为f(x)单调递增,当x>0时,ξ∈[0,x],f(ξ)-f(x)<0,所以F’(x)<0,F(x)单调递减;当x<0时,ξ∈[x,0],f(ξ)-f(x)>0,所以F’(x)<0,F(x)单调递减。所以F(x)是单调递减的奇函数。
转载请注明原文地址:https://kaotiyun.com/show/U9X4777K
0
考研数学三
相关试题推荐
设总体X~U(θ1,θ2),X1,X2,…,Xn是来自总体X的样本,求θ1,θ2的矩估计和最大似然估计.
设f(x)在[a,b]是二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f(ξ)≥|f(a)一f(b)|.
设f(x)=,则下列结论中错误的是()
设B=2A-E.证明:B2=E的充分必要条件是A2=A.
如图1.3—1,设曲线方程为y=x2+,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0.证明:
求差分方程yt+1+3yt=3t+1(2t+1)的通解。
求二阶常系数线性微分方程y"+λy’=2x+1的通解,其中λ为常数.
已知二次型f(x1,x2,x3)=422一3x32+4x1x2—4x1x3+8x2x3.写出二次型f的矩阵表达式;
求下列极限.
已知fn(x)满足fn’(x)=fn(x)+xn-1ex(n为正整数),且求函数项级数之和.
随机试题
氯喹在下列哪些部位浓度高:
麻醉前应用抗胆碱药的主要作用是
非诺贝特属于阿西莫司属于
下列吗啡对心血管系统作用哪项是错误的( )。
根据我国《民法通则》以及相关的法律规范的规定,能够引起债的发生的法律事实,即债的发生根据,主要包括()。
建设工程项目管理规划的内容一般包括()。
对我国证券回购市场的描述,错误的是()。
在社会主义经济建设中,积累基金是由几个部分构成的。在下列选项中。属于积累基金的是()。
老师穿了一套新衣服,课前一进班级,所有学生的眼光都盯着老师。有几个淘气的男同学就凑在一起,用调侃的语调大声喊道:“老师,我爱你。”下列处理方式,最恰当的一项是()。
谈谈你对艺术美与现实美关系的理解。
最新回复
(
0
)