首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是连续且单调递增的奇函数,设F(x)=∫0x(2u-x)f(x-u)du,则F(x)是( )
设f(x)是连续且单调递增的奇函数,设F(x)=∫0x(2u-x)f(x-u)du,则F(x)是( )
admin
2017-11-30
32
问题
设f(x)是连续且单调递增的奇函数,设F(x)=∫
0
x
(2u-x)f(x-u)du,则F(x)是( )
选项
A、单调递增的奇函数。
B、单调递减的奇函数。
C、单调递增的偶函数。
D、单调递减的偶函数。
答案
B
解析
令x-u=t,则
F(x)=∫
0
x
(x-2t)f(t)dt,F(-x)=∫
0
-x
(-x-2t)f(t)dt,
令t=-u,
F(-x)=-∫
0
x
(-x+2u)f(-u)du=∫
0
x
(x-2u)f(-u)du。
因f(x)是奇函数,
f(x)=-f(-x),F(-x)=-∫
0
x
(x-2u)f(u)du,
则有F(x)=-F(-x)为奇函数。
F’(x)=∫
0
x
f(t)dt-xf(x),
由积分中值定理可得∫
0
x
f(t)dt=f(ξ)x,ξ介于0到x之间,
F’(x)=f(ξ)x-xf(x)=[f(ξ)-f(x)]x,
因为f(x)单调递增,当x>0时,ξ∈[0,x],f(ξ)-f(x)<0,所以F’(x)<0,F(x)单调递减;当x<0时,ξ∈[x,0],f(ξ)-f(x)>0,所以F’(x)<0,F(x)单调递减。所以F(x)是单调递减的奇函数。
转载请注明原文地址:https://kaotiyun.com/show/U9X4777K
0
考研数学三
相关试题推荐
设总体X的概率分布为是未知参数.用样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值.
设连续非负函数f(x)满足f(x)f(一x)=1,则=________.
求函数f(x)一nx(1一x)n在[0,1]上的最大值M(n)及limM(n).
设有两个n维向量组(Ⅰ)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1-λ1)β1+…+(ks-λs)βs=0
设y(x)=求(2x)2n一(|x|<1)的和函数及级数的值.
设总体X服从参数为N和p的二项分布,X1,X2,…,Xn为取自X的样本,试求参数N和p的矩估计.
设g(x)=,f(x)=∫0xg(t)dt.(1)证明:y=f(x)为奇函数,并求其曲线的水平渐近线;(2)求曲线y=f(x)与它所有水平渐近线及Oy轴围成图形的面积.
方程组的通解是________.
设总体X的概率密度为X1,X2,…,Xn是来自X的样本,则未知参数θ的最大似然估计值为________.
判断下列结论是否正确,并证明你的判断.若则存在δ>0,使得当0<|x-a|<δ时有界.
随机试题
将等级特权制度推向顶峰的法律是()
当()时,进程从执行状态变为就绪状态。
清营汤主治中身热的特点是:
A.三萜皂苷B.异黄酮C.木脂素D.甾体皂苷E.二萜《中国药典》中,穿心莲质量控制成分的结构类型是
A.紫外线灭菌法B.滤过除菌法C.热压灭菌法D.辐射灭菌法E.干热空气灭菌法
我国能源效率比国际先进水平低()个百分点。
托收和信用证两种支付方式使用的汇票都是商业汇票,都是通过银行收款,所以()。
个人独资企业解散的,财产清偿顺序是()。
Kurds
设α=∫05xdt,β=∫0sinx,当x→0时,α是β的().
最新回复
(
0
)