首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是连续且单调递增的奇函数,设F(x)=∫0x(2u-x)f(x-u)du,则F(x)是( )
设f(x)是连续且单调递增的奇函数,设F(x)=∫0x(2u-x)f(x-u)du,则F(x)是( )
admin
2017-11-30
48
问题
设f(x)是连续且单调递增的奇函数,设F(x)=∫
0
x
(2u-x)f(x-u)du,则F(x)是( )
选项
A、单调递增的奇函数。
B、单调递减的奇函数。
C、单调递增的偶函数。
D、单调递减的偶函数。
答案
B
解析
令x-u=t,则
F(x)=∫
0
x
(x-2t)f(t)dt,F(-x)=∫
0
-x
(-x-2t)f(t)dt,
令t=-u,
F(-x)=-∫
0
x
(-x+2u)f(-u)du=∫
0
x
(x-2u)f(-u)du。
因f(x)是奇函数,
f(x)=-f(-x),F(-x)=-∫
0
x
(x-2u)f(u)du,
则有F(x)=-F(-x)为奇函数。
F’(x)=∫
0
x
f(t)dt-xf(x),
由积分中值定理可得∫
0
x
f(t)dt=f(ξ)x,ξ介于0到x之间,
F’(x)=f(ξ)x-xf(x)=[f(ξ)-f(x)]x,
因为f(x)单调递增,当x>0时,ξ∈[0,x],f(ξ)-f(x)<0,所以F’(x)<0,F(x)单调递减;当x<0时,ξ∈[x,0],f(ξ)-f(x)>0,所以F’(x)<0,F(x)单调递减。所以F(x)是单调递减的奇函数。
转载请注明原文地址:https://kaotiyun.com/show/U9X4777K
0
考研数学三
相关试题推荐
一电路使用某种电阻一只,另外35只备用,若一只损坏,立即使用另一只更换,直到用完所有备用电阻为止.设电阻使用寿命服从参数为λ=0.01的指数分布,用X表示36只电阻的使用总寿命,用中心极限定理估计P(X>4200)(=0.9772).
求曲线y=3一|x2一1|与x轴围成的封闭区域绕直线y=3旋转所得的旋转体的体积.
设f(x)的一个原函数为=________.
假设G=((x,y)|x2+y2≤r2}是以原点为圆心,半径为r的圆形区域,而随机变量X和Y的联合分布是在圆G上的均匀分布。试确定随机变量X和Y的独立性和相关性.
由曲线y=x3,y=0及x=1所围图形绕x轴旋转一周得到的旋转体的体积为________.
平面区域D={(x,y)||x|+|y|≤1},计算如下二重积分:常数λ>0.
设X1,X2,…,Xn为总体X的一个样本,设EX=μ,DX=σ2,试确定常数C,使一CS2为μ2的无偏估计.
设f(x)连续,f(0)=1,f’(0)=2,下列曲线与曲线y=f(x)必有公共切线的是()
曲线的斜渐近线方程为________.
设z=z(x,y)二阶连续可偏导且满足方程在变换下,原方程化为求a,b的值.
随机试题
坏死性小肠结肠炎的临床表现是()
督察机构对公安机关及其人民警察依法履行职责、行使职权和遵守纪律进行现场督察,主要有()。
下列对尖端探针用处的描述,错误的是
女,26岁,人流后体温39.0℃,小腹疼痛据按,呈脓性,白细胞18×109/L,中性0.2,下列治疗方案哪项最佳
下列说法不符合《维也纳条约法公约》的规定的是()。
【背景资料】某施工企业承包施工某矿山井下轨道运输大巷,大巷布置在底板岩层中,穿越岩层Rb=40~60MPa,属中等稳定。已探明地质构造在《地质报告》说明书及所附图中作了叙述并标注。巷道设计为半圆拱形断面,采用锚喷支护。施工单位根据建设方
关于会计电算化意义的说法错误的是()。
韦纳提出可以根据三个维度对成败进行原因分析:内外维度、稳定性维度和()。
休息日下午六点多。你送亲友去赶火车,在大桥上。你看到桥下有一老太太晕倒了,引起围观,交通开始堵塞.你怎么办?
Wearetoldthatthemassmediaarethegreatestorgansforenlightenmentthattheworldhasyetseen;thatinBritain,forinst
最新回复
(
0
)