首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=0的解,则m=_________.
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=0的解,则m=_________.
admin
2020-01-15
75
问题
设A为三阶实对称矩阵,α
1
=(m,-m,1)
T
是方程组AX=0的解,α
2
=(m,1,1-m)
T
是方程组(A+E)X=0的解,则m=_________.
选项
答案
1
解析
由AX=0有非零解得r(A)<3,从而λ=0为A的特征值,α
1
(m,-m,1)
T
为其对应的特征向量;
由(A+E)X=0有非零解得r(A+E)<3,|A+E|=0,λ=-1为A的另一个特征值,其
对应的特征向量为α
2
=(m,1,1-m)
T
,因为A为实对称矩阵,所以A的不同特征值对应的特征向量正交,于是有m=1.
转载请注明原文地址:https://kaotiyun.com/show/UXA4777K
0
考研数学二
相关试题推荐
设u=f(χ,y,z)有连续的一阶偏导数,又函数y=y(χ)及z=z(χ)分别由下列两式确定eχy-χy=2,eχ=,求=_______.
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=_______.
设三阶矩阵A=,三维列向量a=(a,1,1)T.已知Aa与a线性相关,则a=________。
求下列函数的极值:(1)z=x2-xy+y2+9x-6y+20(2)z=4(x-y)-x2-y2。(3)z=x3+y3-3xy(4)z=xy(a-x-y)(a≠0)
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中求正交变换X=QY将二次型化为标准形;
已知n阶矩阵A满足A3=E.(1)证明A2-2A-3E可逆.(2)证明A2+A+2E可逆.
设在[0,+∞]上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0.证明:f(x)在(0,+∞)内有且仪有一个零点.
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosdx=0.试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
二次型f(x1,x2,x3)=-4x1x2-8x1x3-4x2x3经过正交变换化为标准形,求:正交变换的矩阵Q.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
随机试题
下列属于X线机辅助装置的是
通信设备的迁装、换装及电路割接工作由()负责组织。
按照合同约定,建筑材料、建筑构配件和设备由工程承包单位采购的,()不得指定承包单位购入用于工程的建筑材料、建筑构配件和设备或者指定生产厂、供应商。
旅行社经营中华人民共和国境内居民(),必须经国家旅游局批准。
诗句“丹霞夹明月,华星出云间”出自()。
某保险公司计划推出一项医疗保险,对象是60岁以上经体检无重大疾病的老年人。投保者在有生之年如果患心血管疾病或癌症,则其医疗费用的90%将由保险公司赔付。为了吸引投保者,保险金又不能定得太高。有人估计保险金将不足以支付赔付金,因而会是个赔本生意。尽管如此,保
利用代换u=ycosx将微分方程y"cosx一2y’sinx+3ycosx=ex化简,并求出原方程的通解.
有如下C语言程序。intmain(){inti;for(i=0;i<2;i++){fork();printf("HH\n");}}在UNIX操作系统中正确编译链接后,其正确的运行结果是()。
下面论述正确的是( )。
看到这样的景色,你就会感觉这是来到了日本。
最新回复
(
0
)