首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n阶矩阵A满足A3=E. (1)证明A2-2A-3E可逆. (2)证明A2+A+2E可逆.
已知n阶矩阵A满足A3=E. (1)证明A2-2A-3E可逆. (2)证明A2+A+2E可逆.
admin
2019-02-23
54
问题
已知n阶矩阵A满足A
3
=E.
(1)证明A
2
-2A-3E可逆.
(2)证明A
2
+A+2E可逆.
选项
答案
通过特征值来证明,矩阵可逆的充要条件是0不是它的特征值. 由于A
3
=E,A的特征值都满足λ
3
=1. (1)A
2
-2A-3E=(A-3E)(A+E),3和-1都不满足λ
3
=1,因此都不是A的特征值.于是(A-3E)和(A+E)都可逆,从而A
2
-2A-3E可逆. (2)设A的全体特征值为λ
1
,λ
2
,…,λ
n
,则A
2
+A+2E的特征值λ
i
2
+λ
i
+2,i=1,2,…,n. 由于λ
i
3
=1,λ
i
或者为1,或者满足λ
i
2
+λ
i
+1=0.于是λ
i
2
+λ
i
+2或者为4,或者为1,总之都不是0.因此A
2
+A+2E可逆.
解析
转载请注明原文地址:https://kaotiyun.com/show/Xvj4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得
设f(x)为单调可微函数,g(x)与f(x)互为反函数,且f(2)=4,f’(2)=,f’(4)=6,则g’(4)等于().
设A为m×n矩阵且r(A)=n(n<m),则下列结论中正确的是().
设D={(x,y)|0≤x≤1,0≤y≤1),直线l:x+y=t(t≥0),S(t)为正方形区域D位于l左下方的面积,求
曲线y=的渐近线的条数为().
确定常数a,c,使得,其中c为非零常数.
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。求曲线x=φ(
设随机变量U在区间[-2,2]上服从均匀分布,令求(1)(X,Y)的联合概率分布;(2)Z=XY的概率分布.
随机试题
A.接受B.肯定C.澄清D.重构E.代述向患者表明理解他所叙述的感觉,属于与精神疾病患者沟通技巧中的
为明确和量化诊断二尖瓣狭窄最可靠的方法是
滴虫性阴道炎的传染方式不包括
不属于局部振动病诊断常规询问检查的内容是
根据我国草原法的规定,下列属于基本草原的是:()。
管理是一个复杂过程,其主要要素有()。(2010年多项选择第414题)
中央银行进行公开市场业务操作的工具主要是()。(中山大学2013真题)
Lookatthefollowingtheories(Questions4-7)andthelistofpeoplebelow.Matcheachtheorywiththepersonitiscreditedto.
TheTragicalHistoryofDoctorFaustusiswrittenby
Itiswe_____computerstotheproductionofironandsteel.
最新回复
(
0
)