首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条直线的方程为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+C=0.
已知平面上三条直线的方程为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+C=0.
admin
2017-10-21
22
问题
已知平面上三条直线的方程为
l
1
:ax+2by+3c=0,
l
2
:bx+2cy+3a=0,
l
3
:cx+2ay+3b=0.
试证这三条直线交于一点的充分必要条件为a+b+C=0.
选项
答案
l
1
,l
2
,l
3
交于一点即方程组 [*] 有唯一解,即系数矩阵的秩=增广矩阵的秩=2. 记[*] 则方程组系数矩阵的秩=r(A),增广矩阵的秩=r(B),于是l
1
,l
2
,l
3
交于一点[*]r(A)=r(B)=2. 必要性 由于r(B)=2,则|B|=0.计算出 |B|=一(a+b+c)(a
2
+b
2
+c
2
一ab一ac—bc) [*] a,b,c不会都相等(否则r(A)=1),即(a一b)
2
+(b—c)
2
+(c一a)
2
≠0.得a+b+c=0. 充分性 当a+b+c=0时,|B|=0,于是r(A)≤r(B)≤2.只用再证r(A)=2,就可得到r(A)=r(B)=2. 用反证法.若r(A)<2,则A的两个列向量线性相关.不妨设第2列是第1列的A倍,则b=λa,c=λb,a=λc.于是λ
3
a=a,λ
3
b=b,λ
3
c=c,由于a,b,c不能都为0,得λ
3
=1,即λ=1,于是a=b=c.再由a+b+c=0,得a=b=c=0,这与直线方程中未知数的系数不全为0矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/UdH4777K
0
考研数学三
相关试题推荐
求由曲线y=4一x2与x轴围成的部分绕直线x=3旋转一周所成的几何体的体积.
设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.
设C1,C2是任意两条过原点的曲线,曲线C介于C1和C2之间,如果过C上任意一点P引平行于x轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=x2,C1的方程是y=,求曲线C2的方程.
由方程确定的隐函数z=z(x,y)在点(1,0,一1)处的微分为dz=__________。
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
就a,b的不同取值,讨论方程组解的情况.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
求方程组的通解.
随机试题
彤彤,17岁,女,高中生。以往身体健康,性格内向,喜欢自己一个人沉思,不善交友,不善言谈,腼腆胆怯,不苟言笑,不曾恋爱。彤彤的母亲曾因“精神分裂症”住院,父亲有“神经衰弱”经常去医院就诊。彤彤学习很好,是班里的优秀学生。3天前,彤彤没有什么原因就出现失眠、
A.肺泡毛细血管急性损伤B.支气管肺感染和阻塞C.肺弥散功能障碍D.肺动脉高压E.肺性脑病肺心病发病的主要机制是
典型登革热的临床表现主要有
脂性肾病的病理学特点是
粒径为0.15~4.75mm的岩石颗粒称为()。
在中国境内设立的外商投资企业、外国企业可以使用选定的一种外国文字作为会计记录文字。()
合同的双方当事人可以根据自己的意愿决定是否采取书面形式订立合同。()
某仓库被窃。经过侦破,查明作案的人是甲、乙、丙、丁四个人中的一个。审讯中,四个人的口供如下:甲:“仓库被窃的那一天,我在别的城市,因此我是不可能作案的。”乙:“丁就是罪犯。”丙:“乙是盗窃仓库的罪犯。因为我亲眼看见他那一天进过仓库。”丁:“乙是在有
Whenmymother’shealthwasfailing,Iwasthe"bad"sisterwholivedfarawayandwasn’tinvolved.Mysisterhelpedmyparents.
Wemusttryto______thebestofourmoralvaluesforourchildrenandgrandchildren.
最新回复
(
0
)