首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=α2+α3,Aα3=2α2+3α3. 求A的特征值;
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=α2+α3,Aα3=2α2+3α3. 求A的特征值;
admin
2018-08-03
44
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
求A的特征值;
选项
答案
记矩阵C=[α
1
,α
2
,α
3
],则由(1)知AC=CB,又因α
1
,α
2
,α
3
是线性无关的3维列向量,知C为3阶可逆方阵,故得C
—1
AC=B,计算可得B特征值为λ
1
=λ
2
=1,λ
3
=4,因相似矩阵有相同特征值,得A的特征值为λ
1
=λ
2
=1,λ
3
=4.
解析
转载请注明原文地址:https://kaotiyun.com/show/Urg4777K
0
考研数学一
相关试题推荐
设a是n维单位列向量,A=E一ααT.证明:r(A)<n.
设A为三阶正交阵,且|A|<0,|B—A|=一4,则|E—ABT|=___________.
设A=,方程组AX=β有解但不唯一.(1)求a;(2)求可逆矩阵P,使得P-1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A为三阶实对称矩阵,α1=(a,一a,1)T是方程组AX=0的解,α2=(a,1,1—a)T是方程组(A+E)X=0的解,则a=___________.
设齐次线性方程组,其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
设α1,α2,…,αt为n个n维向量,证明:α1,α2,…,αt线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αt线性表示.
设α1,α2,…,αn为n个n维列向量,证明:α1,α2,…,αn线性无关的充分必要条件是
设周期为2π的函数f(x)=的傅里叶级数为(ancosnx+bnsinnx),(Ⅰ)求系数a0,并证明an=0,(n≥1);(Ⅱ)求傅里叶级数的和函数g(x)(-π≤x≤π),及g(2π)的值.
已知二次型f(x1,x2,x3)=(1一a)+2(1+a)x1x2的秩为2.(Ⅰ)求a的值;(Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形;(Ⅲ)求方程f(x1,x2,x3)=0的解.
随机试题
(2013年4月)我国《民法通则》第五章第三节所列的知识产权包括有()()()()()()。
设想没有运动的物质必然导致()
男,30岁,肥胖。近来出现多饮多食、多尿、消瘦、尿糖阳性、血糖升高,诊断为非胰岛素依赖型糖尿病。经上述治疗,尿糖仍持续阳性,血糖仍高考虑改用
下列评价指标中,不属于投资方案经济效果静态评价指标的是()。
下列关于古诺模型的说法中,正确的有()。Ⅰ.古诺模型又称双寡头模型Ⅱ.古诺模型是由法国经济学家古诺于1938年提出的Ⅲ.古诺模型通常被作为寡头理论分析的出发点Ⅳ.古诺模型是早期的寡头模型
圆锥体高h与底面半径R之比为4:3,S侧=15π,则h=
下列选项中的表述不属于对狭义的法的适用的理解的有()。
TheladydressedinthelatestParisfashionis______inherappearancebutrudeinherspeech.
Byeleveno’clockthedaybeforeyesterday,we______atthestation.
Notlongago,manypeoplebelievedthatbabiesonlywantedfoodandtobekeptwarmanddry.Somepeople(1)______babieswerenot
最新回复
(
0
)