首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且|f(x)dx=0,|f(x)cosxdx=0,试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ0)=0.
设函数f(x)在[0,π]上连续,且|f(x)dx=0,|f(x)cosxdx=0,试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ0)=0.
admin
2014-01-26
59
问题
设函数f(x)在[0,π]上连续,且|f(x)dx=0,|f(x)cosxdx=0,试证明:在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
0
)=0.
选项
答案
[详解1] 令F(x)=∫
0
x
f(t)dt,则有F(0)=F(π)=0.又因为 0=∫
0
π
f(x)cosxdx =∫
0
π
F(x) =F(x)cosx|
0
π
+∫
0
π
F(x)sinsxdx =∫
0
π
F(x)sinxdx 令G(x)=∫
0
x
F(t)sintdt,则G(0)=G(π)=0,于是,对G(x)在[0,π]上使用拉格朗日中值定理知,存在ξ∈(0,π),使F(ξ)sinξ=0. 因为当∈E(0,π),sinξ≠0,所以有F(ξ)=0.这样就证明了 F(0)-F(ξ)=F(π)=0. 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔中值定理,知至少存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,π),使 F’(ξ
1
)=F’(ξ
2
)=0, 即 f(ξ
1
)=f(ξ
2
)=0. [详解2] 反证法:令F(x)=∫
0
x
f(t)dt.则有F(0)=F(π)-0.由罗尔定理知,存在ξ
1
∈(0,π),使F’(ξ
1
)=f(ξ)=0. 假设在(0,π)内f(x)=0仅有一个实根x=ξ
1
,则由∫
0
π
f(x)dx=0可知,f(x)在(0,ξ
1
)内与(ξ
1
,π)内异号,不妨设在(0,ξ
1
)内f(x>0,在(ξ
1
,π)内f(x)<0.于是再由∫
0
π
f(x)dx=0 与∫
0
π
f(x)cosxdx及cosx盯在[0,π]上的单调性知: 与∫
0
π
f(x)cosxdx及cosx盯在[0,π]上的单调性知: 0=∫
0
π
f(x)(cosx-cosξ
1
)dx =∫
0
ξ
1
f(x)(cosx—cosξ
1
)dx+∫
ξ
1
π
f(x)(cosx-cosξ
1
)dx>0, 矛盾.从而推知,在(0,π)内除ξ
1
外,f(x)=0至少还有另一个实根ξ
2
,故知存在实根ξ
1
,ξ
2
∈(0,π),ξ
1
≠ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
解析
[分析] 本题直接用连续函数的介值定理是困难的,可考虑作辅助函数F(x)= ∫
0
x
f(t)dt,显然有F(0)=F(π)=0,但要最终证明结论,还需另找F(x)的一个零点,这当然要由第二个条件∫
0
π
f(x)cosxdx=0来实现.为了使其与F(x)联系起来,可将其变换为
0=∫
0
π
f(x)cosxdx=∫
0
π
F(x),再通过分部积分和微分中值定理或积分巾值定理就可达到目的.
[评注1] 证明f(x)有是个零点的一个有效的方法是证明它的原函数有k+1个零点.F(x)=∫
0
x
f(t)dt是多次考到的一个特殊的原函数,应当引起注意.
[评注2] 详解1中的ξ和详解2中的ξ
1
均可由积分中值定理得到,请读者自己思考.
积分中值定理:设f(x)在[a,b]上连续,则至少存在一点ξ∈(a,b),使
∫
a
b
f(x)dx=f(ξ)(b-a).
[评注3] 证明介值问题,一般有两种情形:
1.要证的结论与某函数在某一点的函数值f(ξ)有关,但与其导数值无关,可考虑用连续函数的介值定理;
2.要证的结论与某函数在某一的导数值f’(ξ)(或更高阶导数值)有关,则应考虑用微分中值定理(包括罗尔定理、拉格朗日中值定理和泰勒公式).
但是根据(∫
a
x
f(t)dt)’=f(x)知,若要证的结论与导数无关,用连续函数的介值定理又解决不了时,也可考虑用上述变限的定积分所构造的辅助函数,通过微分中值定理进行证明.这是一个例外的隐含情形,应当引起注意.
转载请注明原文地址:https://kaotiyun.com/show/VQ34777K
0
考研数学二
相关试题推荐
(00年)假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别为p1=18-2Q1,p2=12-Q2其中P1和P2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,
(13年)设生产某商品的固定成本为60000元,可变成本为20元/件,价格函数为P=60-,(p是单价,单位:元;Q是销量,单位:件),已知产销平衡,求:(Ⅰ)该商品的边际利润;(Ⅱ)当P=50时的边际利润,并解释其经济意义。
(96年)设矩阵A=(1)已知A的一个特征值为3,试求y;(2)求可逆矩阵P,使(AP)T(AP)为对角矩阵.
(2007年)设函数y=y(x)由方程ylny—x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
(2011年)求不定积分
求幂级数的收敛域及和函数
函数的可去间断点的个数为
(2004年)设函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_______。
证明:当x>0时,arctanx+1/x>π/2.
设F(x)=∫xx+2πesintsintdt,则F(x)()
随机试题
Englishisnowtheinternationallanguageforairlinepilots,scientists,medicalexperts,businessmenandmanyothers.Conseque
对葡萄糖重吸收描述错误的是
光电峰的另一个名称是
水泥混凝土路面施工时,混凝土浇筑的部分工序是支搭模板、()等。
(2008年考试真题)与国际证监会组织(I0SCO)于1998年制定的《证券监管的目标与原则》中关于证券监管目标的定义相区别,我国基金监管目标增加了下列哪一条?()
一家小型食品加工企业,经济状况不够稳定,产品经营范围经常发生变化,并且无力构建自己的分销渠道,该企业最适宜采取的分销渠道是()。
无锡是一座继承千年泰伯故里的荣耀,延续百年工商名城的辉煌的城市。太湖之滨的明珠,正以江南锦绣繁华地的身姿,舒展尚德务实、和谐奋进的水袖,演绎一场关于幸福和感动的千古传奇。作为导游,请向你的游客介绍美丽的无锡这座城市!以下属于苏锡菜的代表名菜
简述《中华人民共和国教师法》规定的教师享有的权利。
Readthememoandnotebelow.Completetheformontheoppositepage.Writeawordorphrase(inCAPITALLETTERS)oranumberonl
PlantsPlantsareveryimportantlivingthings.Lifecouldnotgooniftherewerenoplants.Thisisbecauseplantscanmak
最新回复
(
0
)